8 research outputs found

    Orthogonality and Boolean Algebras for Deduction Modulo

    Get PDF
    Originating from automated theorem proving, deduction modulo removes computational arguments from proofs by interleaving rewriting with the deduction process. From a proof-theoretic point of view, deduction modulo defines a generic notion of cut that applies to any first-order theory presented as a rewrite system. In such a setting, one can prove cut-elimination theorems that apply to many theories, provided they verify some generic criterion. Pre-Heyting algebras are a generalization of Heyting algebras which are used by Dowek to provide a semantic intuitionistic criterion called superconsistency for generic cut-elimination. This paper uses pre-Boolean algebras (generalizing Boolean algebras) and biorthogonality to prove a generic cut-elimination theorem for the classical sequent calculus modulo. It gives this way a novel application of reducibility candidates techniques, avoiding the use of proof-terms and simplifying the arguments

    The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry

    No full text
    corecore