33 research outputs found

    A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays

    Full text link
    [EN] A detailed study on the spray local flow and flame structure has been performed by means of PIV and laser-sheet LIF techniques under Diesel spray conditions. Operating conditions were based on Engine Combustion Network recommendations. A consistent comparison of inert and reacting axial velocity fields has produced quantitative information on the effect of heat release on the local flow. Local axial velocity has been shown to increase 50-60% compared to the inert case, while the combustion-induced radial expansion of the spray has been quantified in terms of a 0.9-2.1 mm radius increase. As a result, the drop in entrainment rate has been quantified around 25% compared to the inert case. Streamline analysis also hints at a reduced entrainment under reacting conditions. A 1D spray model under reacting condition has been used, which confirms the modifications obtained in the main flow metrics when moving from inert to reacting conditions. When comparing the flow evolution with the flame structure, little effect of chemical activity on the spray flow upstream the lift-off length has been evidenced, in spite of the presence of formaldehyde in such regions. Only downstream of the lift-off length, as defined by OH LIF, has a strong change in flow pattern been observed as a result of combustion-induced heat release. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.This work was carried out during a scientific visit period by J.M. Garcia-Oliver at IFPEN in 2015, which was funded by the Spanish Ministry of Education, Culture and Sport (Grant PRX14/00192). This study was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the COMEFF (TRA2014-59483-R) project.GarcĂ­a-Oliver, JM.; Malbec, L.; Toda, HB.; Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame. 179:157-171. https://doi.org/10.1016/j.combustflame.2017.01.023S15717117

    Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

    Get PDF
    International audienceThe sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine to achieve engine relevant pressure and temperature conditions at start of pilot injection. A Diesel injector with a 100 µm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous OH* chemiluminescence and Schlieren imaging. The sooting behavior of the flame has been characterized using the 2D-DBI imaging methodology. The apparent soot black-body temperature has been measured 1D-resolved along the injector axis by applying an imaging spectrograph. Addition of methane into the air charge considerably prolongs the ignition delay with an increasing effect under less reactive conditions and with higher methane equivalence ratios. Therefore, the influence of methane on the formation of soot is twofold: in case of short pilot injection, the presence of methane was found to decrease the soot formation due to the leaner pilot fuel mixture at time of ignition. For longer pilot fuel injections, methane enhances the soot production by decreasing oxygen availability and introducing additional carbon. In all cases, methane strongly defers the oxidation of soot due to the lower availability of oxygen

    A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments

    Get PDF
    This work presents an analysis of the stabilization of diffusion flames created by the injection of fuel into hot air, as found in Diesel engines. It is based on experimental observations and uses a dedicated Direct Numerical Simulation (DNS) approach to construct a numerical setup, which reproduces the ignition features obtained experimentally. The resulting DNS data are then used to classify and analyze the events that allow the flame to stabilize at a certain Lift-Off Length (LOL) from the fuel injector. Both DNS and experiments reveal that this stabilization is intermittent: flame elements first auto-ignite before being convected downstream until another sudden auto-ignition event occurs closer to the fuel injector. The flame topologies associated to such events are discussed in detail using the DNS results, and a conceptual model summarizing the observation made is proposed. Results show that the main flame stabilization mechanism is auto-ignition. However, multiple reaction zone topologies, such as triple flames, are also observed at the periphery of the fuel jet helping the flame to stabilize by filling high-temperature burnt gases reservoirs localized at the periphery, which trigger auto-ignitions

    Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors

    Full text link
    [EN] Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. In order to develop a complete pictitre of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. These factors increase the likelihood of spray collapse with longer injection durations.The X-ray experiments were performed at the 7-BM and 32-ID beam lines of the APS at Argonne National Laboratory. Use of the APS is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. Research was also performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. Sandia National Laboratories is managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA-0003525.Duke, DJ.; Kastengren, AL.; Matusik, KE.; Swantek, AB.; Powell, CF.; Payri, R.; Vaquerizo, D.... (2017). Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors. Experimental Thermal and Fluid Science. 88:608-621. https://doi.org/10.1016/j.expthermflusci.2017.07.015S6086218

    Development of Optical Diagnostic Techniques to Correlate Mixing and Auto-Ignition Processes in High Pressure Diesel Jets

    No full text
    A tracer laser-induced fluorescence (LIF) technique for the visualization of fuel distribution in the presence of oxygen was developed and then used sequentially with high speed chemiluminescence imaging to study the correlation between the mixing and auto-ignition processes of high pressure Diesel jets. A single hole common rail Diesel injector allowing high injection pressures up to 150 MPa was used. The reacting fuel spray was observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Both free jet and flat wall impinging jet configurations were studied. Several tracers were first considered with the objective of developing a tracer-LIF technique in the presence of oxygen. 5-nonanone was selected for its higher fluorescence efficiency. This technique was subsequently combined with high speed chemiluminescence imaging to study the correlation between mixing and auto-ignition. In the free jet configuration and for the parameter range studied, it was found that auto-ignition is preferentially located in rich regions of the upstream mixing zone. Also, in the jet wall configuration, auto-ignition appears in the centre of the jet and propagates towards the periphery, in the vicinity of the wall

    Phosphor Thermometry for the development of energy efficient internal combustion engines

    No full text
    International audienc

    Potentiel de la combustion HCCI et injection précoce

    No full text
    Depuis plusieurs années, l une des problématiques sociétales est de diminuer les émissions de polluants et de gaz à effet de serre dans l atmosphère. Le secteur du transport terrestre est directement concerné par ces considérations. Le moteur Diesel semble promis à un bel avenir grâce à son rendement supérieur à celui du moteur à allumage commandé, conduisant à de plus faibles rejets de CO2. Cependant, sa combustion génère des émissions d oxyde d azote (NOx) et de particules dans l atmosphère. Les normes anti-pollution étant de plus en plus sévères et les incitations à diminuer les consommations de carburant de plus en plus fortes, le moteur Diesel est confronté à une problématique NOx/particules/consommation toujours plus difficile à résoudre. Une des voies envisagées consiste à modifier le mode de combustion afin de limiter les émissions polluantes à la source tout en conservant de faibles consommations. La voie la plus prometteuse est la combustion HCCI (Homogeneous Charge Compression Ignition) obtenue par injections directes précoces. Plusieurs limitations critiques doivent cependant être revues et améliorées : le mouillage des parois par le carburant liquide et le contrôle de la combustion à forte charge. Le but de cette thèse est ainsi de mieux comprendre les phénomènes mis en jeu lors de la combustion HCCI à forte charge obtenue par des multi-injections directes précoces. Une méthodologie a été mise au point afin de détecter le mouillage des parois du cylindre, ce qui a permis de comprendre l effet du phasage et de la pression d injection sur cette problématique. Une stratégie optimale de multi-injections permettant d atteindre une charge élevée sans mouiller les parois a ainsi été développée et choisie. Nous avons ensuite pu mettre en évidence le potentiel de la stratification par la dilution en tant que moyen de contrôle de la combustion en admettant le diluant dans un seul des 2 conduits d admission. Des mesures réalisées en complémentarité sur le même moteur mais en version optique , ont permis, à partir de la technique de Fluorescence Induite par Laser, de montrer que concentrer le diluant dans les zones réactives où se situe le carburant permet un meilleur contrôle de la combustion, ce qui permet d amener le taux de dilution a des niveaux faisables technologiquement.For several years, reduce pollutant and greenhouse gas emissions in the atmosphere is become a leitmotiv. The automotive world is directly affected by these considerations. Diesel engine has a promising future thanks to its efficiency higher than that of S.I. engine, leading to lower CO2 emissions. However, Diesel combustion emits nitrogen oxides (NOx) and particulates in the atmosphere. Emissions regulations are more and more severe, and considerations about fuel consumption are more and more significant. Thus, Diesel engine has to face a NOx/particulates/consumption issue that is more and more difficult to answer. One of the considered ways to reduce pollutant emissions while maintaining low fuel consumptions is to change the combustion mode. The most promising way is Homogeneous Charge Compression Ignition (HCCI) combustion with early direct injections. However, two major issues have to be answered: the wall wetting and the combustion control at high load. Thus, the objective of this PhD thesis is to better understand phenomena occurring during HCCI combustion at high load with early direct injections in order to answer these issues. We have developed a new methodology to detect the cylinder wall wetting process. This allowed to understand the effects of injection phasing and injection pressure on this issue. A multiple injections strategy has been tested and improved. It reaches a high load without cylinder wall wetting. Then, we have highlighted the potential of dilutant stratification as a technique of control of combustion. This technique is based on the introduction of dilutant in one inlet pipe while air is introduced in the other. The use of Laser Induced Fluorescence imaging on the same engine but with optical accesses showed that condensing dilutant in the reactive zones where the fuel is improves combustion control and allows the use of reasonable dilution level.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF

    Engine combustion network special issue

    No full text
    International audienceThe Engine Combustion Network (ECN) is an experimental and modeling collaboration dedicated to the improvement of Computational Fluid Dynamic (CFD) modeling, particularly at engine-relevant conditions occurring at high temperature and pressure where quantitative experimental data is sparse. Beginning in 2009, a working group established an internet data archive library (centrally at http://ecn.sandia.gov/) and directed experiments at specific injector and ambient gas conditions pertinent to those in engines. With the generous donation of fuel injectors by Robert Bosch LLC and Delphi Technologies the voluntary international working group agreed to perform experiments at the same target conditions, so named "Spray A" for the first diesel target and "Spray G" for the first gasoline target. The massive dataset generated and archived has become a serious focal point for CFD model improvement, and diagnostics have advanced to provide more quantitative results. To date, we estimate that over 75 different diagnostics have been performed by more than 20 institutions at Spray A conditions. And more than 30 institutions have performed CFD of Spray A using improved models, with results shared openly at ECN workshops. We also know that many more in the engine industry use the ECN archive to evaluate their own CFD and design practices, ultimately producing cleaner and more fuel-efficient engines. The rationale for participating voluntarily in the ECN may be compared to that of a cycling peloton, as shown in Figure 1. Engine combustion is complex, requiring substantial effort to understand the effect of certain variables or modeling assumptions. A researcher proposing a new diagnostic (e.g. #76) can save tremendous energy if building upon the previous 75 diagnostics, rather than repeating all of these diagnostics individually. Likewise, new modeling ideas are generated by contemplating a wide range of assumptions or results, without necessarily writing and debugging each version of the code on your own. Like cyclists enjoying the slipstream produced by riders at the front of the peloton, these researchers move quickly and advance faster. Soon, they push forward to the front of the group, making unique discoveries that rapidly advance the science of engine combustion, at a pace that would be impossible if working on their own. The need to work closely and precisely together increases according to the difficulty of the problem or if there is a lack of resources to pursue the problem. Cyclists would call this a strong headwind. We recognize that engine combustion research faces strong headwinds at the moment, increasing the need to work together efficiently
    corecore