2,200 research outputs found

    Comment on ``Creating Metastable Schroedinger Cat States''

    Full text link
    After a careful analysis of the feedback model recently proposed by Slosser and Milburn [Phys. Rev. Lett. 75, 418 (1995)], we are led to the conclusion that---under realistic conditions---their scheme is not significantly more effective in the production of linear superpositions of macroscopically distinguishable quantum states than the usual quantum-optical Kerr effect.Comment: 1 page, RevTeX, 1 eps figure (fig_1.eps), accepted for publication in Physical Review Letters [Phys. Rev. Lett. 77 (9) (1996)

    Reply to Comment by J. Zhang and N. Makris on “Estimates of the Ground Accelerations at Point Reyes Station during the 1906 San Francisco Earthquake” by A. Anooshehpoor, T. H. Heaton, B. Shi, and J. N. Brune

    Get PDF
    Contrary to the comments by Zhang and Makris (hereafter, ZM), our equations of motion governing the rocking response of a rectangular block subjected to a full-sine acceleration pulse are correct. Therefore, the first part of ZM's discussion, which is based primarily upon the assumption that the equations of motion in our article were incorrect, is inappropriate. In the second part of the discussion, ZM present new results for mode 2, toppling without impact. We did not consider this mode because it was not relevant to the Point Reyes train, which by eyewitness accounts, had overturned after experiencing one impact. However, as explained in this reply, toppling with no impact is never the minimum condition for overturning, and would in general involve very large horizontal accelerations, especially at frequencies where mode 2 is the only overturning mode

    Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    Full text link
    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe Ωb\Omega_b with a precision of about 4%. With Ωb\Omega_b tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.Comment: 15 pages, 11 figures, minor editorial change

    Evidence for Three Nucleon Force Effects in p-d Elastic Scattering

    Get PDF
    A new measurement of the p-d differential cross section at Ep= 1 MeV has been performed. These new data and older data sets at energies below the deuteron breakup are compared to calculations using the two-nucleon Argonne v18 and the three-nucleon Urbana IX potentials. A quantitative estimate of the capability of these interactions to describe the data is given in terms of a chi^2 analysis. The chi^2 per datum drastically improves when the three-nucleon interaction is included in the Hamiltonian.Comment: 13 pages, 5 figures, to be published in Phys. Rev.

    Generating and probing a two-photon Fock state with a single atom in a cavity

    Get PDF
    A two-photon Fock state is prepared in a cavity sustaining a "source mode " and a "target mode", with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field on the same atom. Extensions to other multi-photon processes and to a new type of micromaser are briefly discussed

    Test of quantum nonlocality for cavity fields

    Full text link
    There have been studies on formation of quantum-nonlocal states in spatially separate two cavities. We suggest a nonlocal test for the field prepared in the two cavities. We couple classical driving fields with the cavities where a nonlocal state is prepared. Two independent two-level atoms are then sent through respective cavities to interact off-resonantly with the cavity fields. The atomic states are measured after the interaction. Bell's inequality can be tested by the joint probabilities of two-level atoms being in their excited or ground states. We find that quantum nonlocality can also be tested using a single atom sequentially interacting with the two cavities. Potential experimental errors are also considered. We show that with the present experimental condition of 5% error in the atomic velocity distribution, the violation of Bell's inequality can be measured.Comment: 14pages, 2figures. accepted to Phys. Rev.

    Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)

    Full text link
    Using density-functional theory with the local-density approximation and the generalized gradient approximation we compute the energy barriers for surface diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly with increasing lattice constant. We also discuss the reconstruction that has been found experimentally when two Ag layers are deposited on Pt(111). Our calculations explain why this strain driven reconstruction occurs only after two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
    • …
    corecore