17 research outputs found

    The distribution of reaction rates and activation energies on catalytic surfaces: Exchange reaction between gaseous benzene and benzene adsorbed on platinum

    Full text link
    A mathematical derivation for the calculation of the distribution function of rate constants and activation energies for an isotopic exchange reaction between chemical species adsorbed on a solid surface and in the surrounding gas phase is presented. Starting from experimental kinetic isotherms, giving the rate of exchange as a function of time at various temperatures, it is shown how it is possible to derive the distribution functions of the rate constants and activation energies. The technique is applied to the exchange reaction between benzene molecules adsorbed on Pt black and molecules present in the gas phase. Experimental results on the rate of this exchange, obtained by means of C-14 labeled benzene, have been collected at 40 [deg], 60 [deg], 80 [deg], and 100 [deg] C, at constant surface coverage. The range of activation energies for the exchange reaction was found to be from about 10 to 35 kcal/mole, while the pre-exponential factor varied from about 107 to 1026 min-1. Additional observations on the chemisorption of benzene on Pt black are presented. The effects of various pretreatments of the Pt surface and of aging of the chemisorbed benzene on the exchange rate are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32196/1/0000254.pd

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Purinoceptors in the central nervous system

    No full text
    New exciting developments on the occurrence and functional role of purinoceptors in mammalian brain were presented at the session 'Purinoceptors in the central nervous system' chaired by Flaminio Cattabeni and Tom Dunwiddie at the Purines '96 international conference. The focus of the session were topics of recent interest, including the sources and mechanisms involved in ATP and adenosine release during physiological neurotransmission in hippocampus, the brain expression of the recently cloned P2 receptors, and the role of the various adenosine receptor subtypes in brain protection from neurodegeneration associated with trauma-, ischemia- and excessive excitatory amino acid neurotransmission. New important insights into the mechanisms responsible for the formation and release of adenosine into the extracellular space were provided by data obtained by Dunwiddie and coworkers in hippocampal pyramidal neurons. These data may have functional implications for the role of purines in modulation of synaptic plasticity and long-term potentiation in this brain area, and hence in cognitive functions. Buell provided an updated overview on the cloning, molecular characteristics and brain expression of various ligand-gated P2X purinoceptors; although the functional role of these receptors in mammalian brain still awaits elucidation, their widespread distribution in the nervous system strongly suggests that ATP-mediated events are more prevalent and important in brain than expected. Pedata presented data on the functional interrelationships between adenosine and glutamate in the brain, and also provided evidence for alterations of the reciprocal regulation between these two systems in aged brain, which may have important implications for both ischemia- and trauma-associated neurodegenerative events and senescence-associated cognitive impairment. Finally, von Lubitz provided novel data on the molecular mechanisms likely to be at the basis of the brain protective effects associated with the chronic stimulation of the adenosine A3 receptor, further confirming that this receptor represents a crucial target for the development of new antiischemic and antineurodegenerative therapeutic agents

    HIF-1 alpha is an essential effector for purine nucleoside-mediated neuroprotection against hypoxia in PC12 cells and primary cerebellar granule neurons

    No full text
    Hypoxia-inducible factor-1 alpha (HIF-1α) and purine nucleosides adenosine and inosine are critical mediators of physiological responses to acute and chronic hypoxia. The specific aim of this paper was to evaluate the potential role of HIF-1α in purine-mediated neuroprotection. We show that adenosine and inosine efficiently rescued PC12 cells (up to 43.6%) as well as primary cerebellar granule neurons (up to 25.1%) from hypoxic insult, and furthermore, that HIF-1α is critical for purine-mediated neuroprotection. Next, we studied hypoxia- or purine nucleoside-increased nuclear accumulation of HIF-1α in PC12 cells. As a possible result of increased protein stabilization or synthesis an up to 2.5 fold induction of HIF-1α accumulation was detected. In cerebellar granule neurons, purine nucleosides induced an up to 3.1 fold HIF-1α accumulation in cell lysates. Concomitant with these results, siRNA-mediated reduction of HIF-1α completely abolished adenosine- and inosine-mediated protection in PC12 cells and severely hampered purine nucleoside-mediated protection in primary neurons (up to 94.2%). Data presented in this paper thus clearly demonstrate that HIF-1α is a key regulator of purine nucleoside-mediated rescue of hypoxic neuronal cells
    corecore