14 research outputs found

    Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly(N‑isopropylacrylamide) and Polyisobutylene

    Get PDF
    Novel amphiphilic conetworks (APCN) consisting of thermoresponsive poly(N-isoproplyacrylamide) (PNiPAAm) cross-linked by hydrophobic methacrylate-telechelic polyisobutylene (MA-PIB-MA) were successfully synthesized in a broad composition range. The resulting PNiPAAm-l-PIB conetworks (“l” stands for “linked by”) were obtained by radical copolymerization of NiPAAm with MA-PIB-MA in tetrahydrofuran, a cosolvent for all the components. Low amounts of extractables substantiated efficient network formation. The composition dependent two glass transition temperatures (Tg) by DSC analysis indicate microphase separation of the cross-linked components without mixed phases. It was found that the PNiPAAm-l-PIB conetworks are uniformly swellable in both water and n-hexane; i.e., these new materials behave either as hydrogels or as hydrophobic gels in aqueous or nonpolar media, respectively. The uniform swelling in both polar and nonpolar solutes indicates cocontinuous (bicontinuous) phase morphology. The equilibrium swelling degrees (R) depend on composition, that is, the higher the PIB content, the lower the R in water and the higher in n-hexane. The PNiPAAm phase keeps its thermoresponsive behavior in the conetworks as shown by significant decrease of the swelling degree in water between 20 and 35 °C. The lower critical solubility temperature (LCST) values determined by DSC are found to decrease from 34.1 °C (for the pure PNiPAAm homopolymer) to the range of 25–28 °C in the conetworks, and the extent of the LCST decrease is proportional with the PIB content. Deswelling-swelling, i.e., heating–cooling, cycle indicates insignificant hysteresis in these new thermoresponsive materials. This indicates that PNiPAAm-l-PIB conetworks with predetermined and thermoresponsive swelling behavior can be designed and utilized in several advanced applications on the basis of results obtained in the course of this study

    Cell microcarriers and microcapsules of stimuli-responsive polymers

    No full text
    International audienceCell microcarriers and microcapsules have presented a wide range of potential applications. This article overviews their role in biotechnology with focus on the progress accomplished using stimuli-responsive polymers. Key properties of cell microcarriers and microcapsules are identified, followed by a description of the chemistry and gel formation mechanism of some of the stimuli-responsive polymers used to design them. Production methods are introduced and characterization techniques for evaluating such microsystems are equally presented

    Timed-release polymer nanoparticles

    No full text
    Triggered-release of encapsulated therapeutics from nanoparticles without remote or environmental triggers was demonstrated in this work. Disassembly of the polymer nanoparticles to unimers at precise times allowed the controlled release of oligo DNA. The polymers used in this study consisted of a hydrophilic block for stabilization and second thermoresponsive block for self-assembly and disassembly. At temperatures below the second block's LCST (i.e., below 37 C for in vitro assays), the diblock copolymer was fully water-soluble, and when heated to 37 C, the polymer self-assembled into a narrow size distribution of nanoparticles with an average diameter of approximately 25 nm. The thermoresponsive nature of the second block could be manipulated in situ by the self-catalyzed degradation of cationic 2-(dimethylamino)ethyl acrylate (DMAEA) units to negatively charged acrylic acid groups and when the amount of acid groups was sufficiently high to increase the LCST of the second block above 37 C. The disassembly of the nanoparticles could be controlled from 10 to 70 h. The use of these nanoparticles as a combined therapy, in which one or more agents can be released in a predetermined way, has the potential to improve the personal point of care treatment of patients
    corecore