64 research outputs found
A Post-Mortem Study of Stacked 16 Ah Graphite//LiFePO₄ Pouch Cells Cycled at 5 °C
Herein, the post-mortem study on 16 Ah graphite//LiFePO4 pouch cells is reported. Aiming to understand their failure mechanism, taking place when cycling at low temperature, the analysis of the cell components taken from different portions of the stacks and from different positions in the electrodes, is performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). Also, the recovered electrodes are used to reassemble half-cells for further cycle tests. The combination of the several techniques detects an inhomogeneous ageing of the electrodes along the stack and from the center to the edge of the electrode, most probably due to differences in the pressure experienced by the electrodes. Interestingly, XPS reveals that more electrolyte decomposition took place at the edge of the electrodes and at the outer part of the cell stack independently of the ageing conditions. Finally, the use of high cycling currents buffers the low temperature detrimental effects, resulting in longer cycle life and less inhomogeneities
Anaesthetic Impairment of Immune Function Is Mediated via GABAA Receptors
GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem
Temporal trends in the systemic inflammatory response syndrome, sepsis, and medical coding of sepsis
Listeria pathogenesis and molecular virulence determinants
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research
Procédé d'extinction d'un générateur électrochimique dans le cas d'un emballement thermique
Disclosed is a method for extinguishing an electrochemical generator (10), in particular in the event of thermal runaway, the electrochemical generator (10) comprising a first electrode and a second electrode, the first electrode being connected to a first terminal (22) and the second electrode being connected to a second terminal (32) or to the ground of the electrochemical generator, the method comprising a step in which the electrochemical generator (10) is covered by an ionic liquid solution (100), the ionic liquid solution (100) continuously covering the electrochemical generator (10) from the first terminal (22) to the second terminal (32) or from the first terminal (22) to the ground, the ionic liquid solution comprising an ionic liquid and an active species having flame-extinguishing and/or flame-retardant properties
Procédé d'extinction d'un générateur électrochimique dans le cas d'un emballement thermique
Disclosed is a method for extinguishing an electrochemical generator (10), in particular in the event of thermal runaway, the electrochemical generator (10) comprising a first electrode and a second electrode, the first electrode being connected to a first terminal (22) and the second electrode being connected to a second terminal (32) or to the ground of the electrochemical generator, the method comprising a step in which the electrochemical generator (10) is covered by an ionic liquid solution (100), the ionic liquid solution (100) continuously covering the electrochemical generator (10) from the first terminal (22) to the second terminal (32) or from the first terminal (22) to the ground, the ionic liquid solution comprising an ionic liquid and an active species having flame-extinguishing and/or flame-retardant properties
Procédé de décharge d'un générateur électrochimique
Disclosed is a method for discharging an electrochemical generator (10) comprising a negative electrode (20) containing lithium or sodium and a positive electrode (30), the method comprising a discharging step during which the electrochemical generator (10) is brought into contact with an ionic liquid solution (100) containing a solvent ionic liquid and an electrically conductive powder so as to discharge the electrochemical generator (10)
Procédé de décharge d'un générateur électrochimique
Disclosed is a method for discharging an electrochemical generator (10) comprising a negative electrode (20) containing lithium or sodium and a positive electrode (30), the method comprising a discharging step during which the electrochemical generator (10) is brought into contact with an ionic liquid solution (100) containing a solvent ionic liquid and an electrically conductive powder so as to discharge the electrochemical generator (10)
Li-ion cell safety monitoring using mechanical parameters, Part 1: normal battery operation
International audienceThe normal operation of a 18650 Lithium-ion cells has been monitored using rectangular rosette strain gauge and a pair of piezoelectric transducers. The sensors for mechanical measurements provide information about the cell deformation mechanism and electrodes structure during the cycling. The strain gauge signal revealed three type of mechanical processes. The predominant deformation pattern during galvanostatic discharge process is an isotropic cylindrical shrinkage relevant to the extraction of lithium ions from the graphite negative electrode. In the case of low-rate discharge in cyclic voltammetry mode, the deformation pattern changes to spherical growth when the state of charge falls below 40. In contrast, the thermal shrinkage and growth of the cell corresponds to simple decrease of the cell diameter with much smaller hysteresis effect. The ultrasound interrogation is able to detect repeatable progressive change of the acoustic waveform transferred across the cell in direction of the jellyroll diameter, which depends on the state of charge and does not undergo any significant changes at different cycling rates. The impact of the state of health under 2h rated charge/discharge cycling at 25°C reveals slow progressive drift of the strain and acoustic signals corresponding to the growth of the cell size
Li-ion cell safety monitoring using mechanical parameters, Part 1: normal battery operation
International audienceThe normal operation of a 18650 Lithium-ion cells has been monitored using rectangular rosette strain gauge and a pair of piezoelectric transducers. The sensors for mechanical measurements provide information about the cell deformation mechanism and electrodes structure during the cycling. The strain gauge signal revealed three type of mechanical processes. The predominant deformation pattern during galvanostatic discharge process is an isotropic cylindrical shrinkage relevant to the extraction of lithium ions from the graphite negative electrode. In the case of low-rate discharge in cyclic voltammetry mode, the deformation pattern changes to spherical growth when the state of charge falls below 40. In contrast, the thermal shrinkage and growth of the cell corresponds to simple decrease of the cell diameter with much smaller hysteresis effect. The ultrasound interrogation is able to detect repeatable progressive change of the acoustic waveform transferred across the cell in direction of the jellyroll diameter, which depends on the state of charge and does not undergo any significant changes at different cycling rates. The impact of the state of health under 2h rated charge/discharge cycling at 25°C reveals slow progressive drift of the strain and acoustic signals corresponding to the growth of the cell size
- …