6,086 research outputs found
Metallicity Evolution in the Early Universe
Observations of the damped Lya systems provide direct measurements on the
chemical enrichment history of neutral gas in the early universe. In this
Letter, we present new measurements for four damped Lya systems at high
redshift. Combining these data with [Fe/H] values culled from the literature,
we investigate the metallicity evolution of the universe from z~1.5-4.5.
Contrary to our expectations and the predictions of essentially every chemical
evolution model, the N(HI)-weighted mean [Fe/H] metallicity exhibits minimal
evolution over this epoch. For the individual systems, we report tentative
evidence for an evolution in the unweighted [Fe/H] mean and the scatter in
[Fe/H] with the higher redshift systems showing lower scatter and lower typical
[Fe/H] values. We also note that no damped Lya system has [Fe/H] < -2.7 dex.
Finally, we discuss the potential impact of small number statistics and dust on
our conclusions and consider the implications of these results on chemical
evolution in the early universe.Comment: 6 pages, 2 encapsulated figures, Latex2e, uses emulateapj.sty and
onecolfloat.sty. Accepted for publication in ApJ Letters: Feb 28, 200
2D Rutherford-Like Scattering in Ballistic Nanodevices
Ballistic injection in a nanodevice is a complex process where electrons can
either be transmitted or reflected, thereby introducing deviations from the
otherwise quantized conductance. In this context, quantum rings (QRs) appear as
model geometries: in a semiclassical view, most electrons bounce against the
central QR antidot, which strongly reduces injection efficiency. Thanks to an
analogy with Rutherford scattering, we show that a local partial depletion of
the QR close to the edge of the antidot can counter-intuitively ease ballistic
electron injection. On the contrary, local charge accumulation can focus the
semi-classical trajectories on the hard-wall potential and strongly enhance
reflection back to the lead. Scanning gate experiments on a ballistic QR, and
simulations of the conductance of the same device are consistent, and agree to
show that the effect is directly proportional to the ratio between the strength
of the perturbation and the Fermi energy. Our observation surprisingly fits the
simple Rutherford formalism in two-dimensions in the classical limit
Constraints on Early Nucleosynthesis from the Abundance Pattern of a Damped Ly-alpha System at z = 2.626
We have investigated chemical evolution in the young universe by analysing
the detailed chemical enrichment pattern of a metal-rich galaxy at high
redshift. The recent detection of over 20 elements in the gas-phase of a damped
Lyman-alpha absorber (DLA) at z = 2.626 represents an exciting new avenue for
exploring early nucleosynthesis. Given a strict upper age of ~2.5 Gyr and a
gas-phase metallicity about one third solar, we have shown the DLA abundance
pattern to be consistent with the predictions of a chemical evolution model in
which the interstellar enrichment is dominated by massive stars with a small
contribution from Type Ia supernovae. Discrepancies between the empirical data
and the models are used to highlight outstanding issues in nucleosynthesis
theory, including a tendency for Type II supernovae models to overestimate the
magnitude of the "odd-even" effect at subsolar metallicities. Our results
suggest a possible need for supplemental sources of magnesium and zinc, beyond
that provided by massive stars.Comment: 12 pages, 7 figs. Accepted for publication in ApJ (The Astrophysical
Journal
Discrete-time quantum walks on one-dimensional lattices
In this paper, we study discrete-time quantum walks on one-dimensional
lattices. We find that the coherent dynamics depends on the initial states and
coin parameters. For infinite size of lattice, we derive an explicit expression
for the return probability, which shows scaling behavior
and does not depends on the initial states of the walk. In the long-time limit,
the probability distribution shows various patterns, depending on the initial
states, coin parameters and the lattice size. The average mixing time
closes to the limiting probability in linear (size of the
lattice) for large values of thresholds . Finally, we introduce
another kind of quantum walk on infinite or even-numbered size of lattices, and
show that the walk is equivalent to the traditional quantum walk with
symmetrical initial state and coin parameter.Comment: 17 pages research not
Exploring the action landscape with trial world-lines
The Hamilton action principle, also known as the principle of least action,
and Lagrange equations are an integral part of advanced undergraduate
mechanics. At present, substantial efforts are ongoing to suitably incorporate
the action principle in introductory physics courses. Although the Hamilton
principle is oft stated as "the action for any nearby trial world-line is
greater than the action for the classical world-line", the landscape of action
in the space of world-lines is rarely explored. Here, for three common problems
in introductory physics - a free particle, a uniformly accelerating particle,
and a simple harmonic oscillator - we present families of trial world-lines,
characterized by a few parameters, that evolve continuously from their
respective classical world-lines. With explicit analytical expressions
available for the action, they permit a graphical visualization of the action
landscape in the space of nearby world-lines. Although these trial world-lines
form only a subset of the space of all nearby world-lines, they provide a
pedagogical tool that complements the traditional Lagrange equation approach
and is well-suited for advanced undergraduate students.Comment: 9 pages, 6 figures, significant structural revisio
Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.
Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease
Non-Redundant Spectral Dimensionality Reduction
Spectral dimensionality reduction algorithms are widely used in numerous
domains, including for recognition, segmentation, tracking and visualization.
However, despite their popularity, these algorithms suffer from a major
limitation known as the "repeated Eigen-directions" phenomenon. That is, many
of the embedding coordinates they produce typically capture the same direction
along the data manifold. This leads to redundant and inefficient
representations that do not reveal the true intrinsic dimensionality of the
data. In this paper, we propose a general method for avoiding redundancy in
spectral algorithms. Our approach relies on replacing the orthogonality
constraints underlying those methods by unpredictability constraints.
Specifically, we require that each embedding coordinate be unpredictable (in
the statistical sense) from all previous ones. We prove that these constraints
necessarily prevent redundancy, and provide a simple technique to incorporate
them into existing methods. As we illustrate on challenging high-dimensional
scenarios, our approach produces significantly more informative and compact
representations, which improve visualization and classification tasks
World-leading science with SPIRou - the nIR spectropolarimeter / high-precision velocimeter for CFHT
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as
a new-generation instrument for CFHT. SPIRou aims in particular at becoming
world-leader on two forefront science topics, (i) the quest for habitable
Earth-like planets around very- low-mass stars, and (ii) the study of low-mass
star and planet formation in the presence of magnetic fields. In addition to
these two main goals, SPIRou will be able to tackle many key programs, from
weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo
processes in fully-convective bodies and planet habitability. The science
programs that SPIRou proposes to tackle are forefront (identified as first
priorities by most research agencies worldwide), ambitious (competitive and
complementary with science programs carried out on much larger facilities, such
as ALMA and JWST) and timely (ideally phased with complementary space missions
like TESS and CHEOPS).
SPIRou is designed to carry out its science mission with maximum efficiency
and optimum precision. More specifically, SPIRou will be able to cover a very
wide single-shot nIR spectral domain (0.98-2.35 \mu m) at a resolving power of
73.5K, providing unpolarized and polarized spectra of low-mass stars with a
~15% average throughput and a radial velocity (RV) precision of 1 m/s.Comment: 12 pages, 5 figures, conference proceedings of the French Society of
Astronomy and Astrophysics meeting 201
Scanning electron microscopy image representativeness: morphological data on nanoparticles.
A sample of a nanomaterial contains a distribution of nanoparticles of various shapes and/or sizes. A scanning electron microscopy image of such a sample often captures only a fragment of the morphological variety present in the sample. In order to quantitatively analyse the sample using scanning electron microscope digital images, and, in particular, to derive numerical representations of the sample morphology, image content has to be assessed. In this work, we present a framework for extracting morphological information contained in scanning electron microscopy images using computer vision algorithms, and for converting them into numerical particle descriptors. We explore the concept of image representativeness and provide a set of protocols for selecting optimal scanning electron microscopy images as well as determining the smallest representative image set for each of the morphological features. We demonstrate the practical aspects of our methodology by investigating tricalcium phosphate, Ca3 (PO4 )2 , and calcium hydroxyphosphate, Ca5 (PO4 )3 (OH), both naturally occurring minerals with a wide range of biomedical applications
Ferritins: furnishing proteins with iron
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins
- …
