4,556 research outputs found

    2D Rutherford-Like Scattering in Ballistic Nanodevices

    Full text link
    Ballistic injection in a nanodevice is a complex process where electrons can either be transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counter-intuitively ease ballistic electron injection. On the contrary, local charge accumulation can focus the semi-classical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR, and simulations of the conductance of the same device are consistent, and agree to show that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation surprisingly fits the simple Rutherford formalism in two-dimensions in the classical limit

    Metallicity Evolution in the Early Universe

    Get PDF
    Observations of the damped Lya systems provide direct measurements on the chemical enrichment history of neutral gas in the early universe. In this Letter, we present new measurements for four damped Lya systems at high redshift. Combining these data with [Fe/H] values culled from the literature, we investigate the metallicity evolution of the universe from z~1.5-4.5. Contrary to our expectations and the predictions of essentially every chemical evolution model, the N(HI)-weighted mean [Fe/H] metallicity exhibits minimal evolution over this epoch. For the individual systems, we report tentative evidence for an evolution in the unweighted [Fe/H] mean and the scatter in [Fe/H] with the higher redshift systems showing lower scatter and lower typical [Fe/H] values. We also note that no damped Lya system has [Fe/H] < -2.7 dex. Finally, we discuss the potential impact of small number statistics and dust on our conclusions and consider the implications of these results on chemical evolution in the early universe.Comment: 6 pages, 2 encapsulated figures, Latex2e, uses emulateapj.sty and onecolfloat.sty. Accepted for publication in ApJ Letters: Feb 28, 200

    Nonlinear position and stiffness Backstepping controller for a two Degrees of Freedom pneumatic robot

    Get PDF
    This paper presents an architecture of a 2 Degrees of Freedom pneumatic robot which can be used as a haptic interface. To improve the haptic rendering of this device, a nonlinear position and stiffness controller without force measurement based on a Backstepping synthesis is presented. Thus, the robot can follow a targeted trajectory in Cartesian position with a variable compliant behavior when disturbance forces are applied. An appropriate tuning methodology of the closed-loop stiffness and closed-loop damping of the robot is given to obtain a desired disturbance response. The models, the synthesis and the stability analysis of this controller are described in this paper. Two models are presented in this paper, the first one is an accurate simulation model which describes the mechanical behavior of the robot, the thermodynamics phenomena in the pneumatic actuators, and the servovalves characteristics. The second model is the model used to synthesize the controller. This control model is obtained by simplifying the simulation model to obtain a MIMO strict feedback form. Finally, some simulation and experimental results are given and the controller performances are discussed and compared with a classical linear impedance controller

    Constraints on Early Nucleosynthesis from the Abundance Pattern of a Damped Ly-alpha System at z = 2.626

    Full text link
    We have investigated chemical evolution in the young universe by analysing the detailed chemical enrichment pattern of a metal-rich galaxy at high redshift. The recent detection of over 20 elements in the gas-phase of a damped Lyman-alpha absorber (DLA) at z = 2.626 represents an exciting new avenue for exploring early nucleosynthesis. Given a strict upper age of ~2.5 Gyr and a gas-phase metallicity about one third solar, we have shown the DLA abundance pattern to be consistent with the predictions of a chemical evolution model in which the interstellar enrichment is dominated by massive stars with a small contribution from Type Ia supernovae. Discrepancies between the empirical data and the models are used to highlight outstanding issues in nucleosynthesis theory, including a tendency for Type II supernovae models to overestimate the magnitude of the "odd-even" effect at subsolar metallicities. Our results suggest a possible need for supplemental sources of magnesium and zinc, beyond that provided by massive stars.Comment: 12 pages, 7 figs. Accepted for publication in ApJ (The Astrophysical Journal

    Discrete-time quantum walks on one-dimensional lattices

    Full text link
    In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that the coherent dynamics depends on the initial states and coin parameters. For infinite size of lattice, we derive an explicit expression for the return probability, which shows scaling behavior P(0,t)∼t−1P(0,t)\sim t^{-1} and does not depends on the initial states of the walk. In the long-time limit, the probability distribution shows various patterns, depending on the initial states, coin parameters and the lattice size. The average mixing time MϵM_{\epsilon} closes to the limiting probability in linear NN (size of the lattice) for large values of thresholds ϵ\epsilon. Finally, we introduce another kind of quantum walk on infinite or even-numbered size of lattices, and show that the walk is equivalent to the traditional quantum walk with symmetrical initial state and coin parameter.Comment: 17 pages research not

    Exploring the action landscape with trial world-lines

    Full text link
    The Hamilton action principle, also known as the principle of least action, and Lagrange equations are an integral part of advanced undergraduate mechanics. At present, substantial efforts are ongoing to suitably incorporate the action principle in introductory physics courses. Although the Hamilton principle is oft stated as "the action for any nearby trial world-line is greater than the action for the classical world-line", the landscape of action in the space of world-lines is rarely explored. Here, for three common problems in introductory physics - a free particle, a uniformly accelerating particle, and a simple harmonic oscillator - we present families of trial world-lines, characterized by a few parameters, that evolve continuously from their respective classical world-lines. With explicit analytical expressions available for the action, they permit a graphical visualization of the action landscape in the space of nearby world-lines. Although these trial world-lines form only a subset of the space of all nearby world-lines, they provide a pedagogical tool that complements the traditional Lagrange equation approach and is well-suited for advanced undergraduate students.Comment: 9 pages, 6 figures, significant structural revisio

    Scanning electron microscopy image representativeness: morphological data on nanoparticles.

    Get PDF
    A sample of a nanomaterial contains a distribution of nanoparticles of various shapes and/or sizes. A scanning electron microscopy image of such a sample often captures only a fragment of the morphological variety present in the sample. In order to quantitatively analyse the sample using scanning electron microscope digital images, and, in particular, to derive numerical representations of the sample morphology, image content has to be assessed. In this work, we present a framework for extracting morphological information contained in scanning electron microscopy images using computer vision algorithms, and for converting them into numerical particle descriptors. We explore the concept of image representativeness and provide a set of protocols for selecting optimal scanning electron microscopy images as well as determining the smallest representative image set for each of the morphological features. We demonstrate the practical aspects of our methodology by investigating tricalcium phosphate, Ca3 (PO4 )2 , and calcium hydroxyphosphate, Ca5 (PO4 )3 (OH), both naturally occurring minerals with a wide range of biomedical applications

    Echelle Spectroscopy of a GRB Afterglow at z=3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe

    Full text link
    We present an echelle spectrum of the Swift GRB 050730, obtained four hours after the burst using the MIKE spectrograph on the Magellan Clay Telescope when the afterglow was at R=17.7. The spectrum reveals a forest of absorption features superimposed on a simple power-law shaped continuum, best described as f_nu(lambda)\propto lambda^{alpha} with alpha =1.88\pm 0.01 over lambda=7000-9000 A. We identify the GRB host at z_GRB=3.96855 based on the hydrogen Lyman absorption series, narrow absorption lines due to heavy ions such as OI, CII, SiII, SII, NiII, FeII, CIV, SiIV, and NV, and fine structure transitions such as OI*, OI**, SiII*, CII*, and FeII*. Together these transitions allow us to study the the properties of the interstellar medium (ISM) in the GRB host. The principal results are as follows. (1) We estimate a neutral hydrogen column density of log N(HI)=22.15\pm 0.05 in the host. (2) The associated metal lines exhibit multiple components over a velocity range of ~80 km/s, with >90% of the neutral gas confined in 20 km/s. (3) Comparisons between different ionic transitions show that the host has little/no dust depletion and has 1/100 solar metallicity. (4) The absorbing gas has much higher density than that of intervening damped Lya absorption (DLA) systems. In addition, we report the identification of an intervening DLA system at z_DLA=3.56439 with log N(HI)=20.3\pm 0.1 and < 5% solar metallicity, a Lyman limit system at z_LLS=3.02209 with log N(HI)=19.9\pm 0.1, a strong MgII absorber at z_MgII=2.25313, and a pair of MgII absorbers at z_MgII=1.7731, 57 km/s apart. We demonstrate that rapid echelle spectroscopy of GRB afterglows helps to reveal a wealth of information in the ISM and the intergalactic medium along the sightline (abridged).Comment: 5 pages, including 2 figures; ApJ Letters in press (minor changes in response to the referee's comments

    Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    Get PDF
    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks
    • …
    corecore