29 research outputs found

    Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years

    Get PDF
    The oxygen isotopic composition of planktonic foraminifera tests is one of the widest used geochemical tools to reconstruct past changes of physical parameters of the upper ocean. It is common practice to analyze multiple individuals from a mono-specific population and assume that the outcome reflects a mean value of the environmental conditions during calcification of the analyzed individuals. Here we present the oxygen isotope composition of individual specimens of the surface-dwelling species Globigerinoides ruber and Globigerina bulloides from sediment cores in the Western Arabian Sea off Somalia, inferred as indicators of past seasonal ranges in temperature. Combining the d18O measurements of individual specimens to obtain temperature ranges with Mg/Ca based mean calcification temperatures allows us to reconstruct temperature extrema. Our results indicate that over the past 20 kyr the seasonal temperature range has fluctuated from its present value of 16 °C to mean values of 13 °C and 11 °C for the Holocene and LGM, respectively. The data for the LGM suggest that the maximum temperature was lower, whilst minimum temperature remained approximately constant. The rather minor variability in lowest summer temperatures during the LGM suggests roughly constant summer monsoon intensity, while upwelling-induced productivity was lowered

    Anti-cyclonic eddy imprint on calcite geochemistry of several planktonic foraminiferal species in the Mozambique Channel

    Get PDF
    Hydrographic conditions in the Mozambique Channel are dominated by the passing of large anticyclonic eddies, propagating poleward into the upstream Agulhas area. Further south, these eddies have been found to control the shedding of Agulhas rings into the Atlantic ocean, thereby playing a key role in Indo-Atlantic Ocean exchange. The element composition of several planktonic foraminifera species collected from sediment trap samples, was compared to in situ water column data from the Mozambique Channel. Single-chamber trace element composition of these foraminifera reveals a close coupling with hydrographic changes induced by anticyclonic eddies. Obtained Mg/Ca values for the surface dwelling Globigerinoides ruber as well as the thermocline dwelling Neogloboquadrina dutertrei follow temperature changes and reduced temperature stratification during eddy conditions. At greater depth, Globorotalia scitula and Pulleniatina obliquiloculata record stable temperatures and thus respond to hydrographic changes with a deepening in habitat depth. Furthermore, test Mn/Ca values indicate a close relationship between water column oxygenation and Mn incorporation in these planktonic foraminiferal specie

    Testing the alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel)

    Get PDF
    Reconstructing past ocean salinity is important for assessing paleoceanographic change and therefore past climatic dynamics. Commonly, sea water salinity reconstruction is based on planktonic foraminifera oxygen isotope values combined with sea surface temperature reconstruction. However, the approach relies on multiple proxies, resulting in rather large uncertainty and, consequently, relatively low accuracy of salinity estimates. An alternative tool for past ocean salinity reconstruction is the hydrogen isotope composition of long chain (C37) alkenones (dDalkenone). Here, we have applied dDalkenone to a 39 ka sedimentary record from the Eastern South African continental shelf in the Mozambique Channel, close to the Zambezi River mouth. Despite changes in global seawater dD related to glacial – interglacial ice volume effects, no clear changes were observed in the dDalkenone record throughout the entire 39 ka. The BIT index record from the same core, which provides information on relative contributions of soil organic matter (OM) vs. marine input, indicates high soil OM input during the glacial and low input during the Holocene. This suggests a more pronounced freshwater influence at the core location during the glacial, resulting in alkenones depleted in D during that time, thereby explaining the lack of a clear glacial-interglacial alkenone dD shift. The correlation between the BIT index and dDalkenone during the glacial period suggests that increased continental runoff potentially changed the growth conditions of the alkenone-producing haptophytes, promoting coastal haptophyte species with generally more enriched dDalkenone values. We therefore suggest that the application of dDalkenone for reconstructing past salinity in coastal settings may be complicated by changes in the alkenone-producing haptophyte community

    Effects of ocean acidification on calcification of the sub-Antarctic pteropod Limacina retroversa

    Get PDF
    Ocean acidification is expected to impact the high latitude oceans first, as CO2 dissolves more easily in colder waters. At the current rate of anthropogenic CO2 emissions, the sub-Antarctic Zone will start to experience undersaturated conditions with respect to aragonite within the next few decades, which will affect marine calcifying organisms. Shelled pteropods, a group of calcifying zooplankton, are considered to be especially sensitive to changes in carbonate chemistry because of their thin aragonite shells. Limacina retroversa is the most abundant pteropod in sub-Antarctic waters, and plays an important role in the carbonate pump. However, not much is known about its response to ocean acidification. In this study, we investigated differences in calcification between L. retroversa individuals exposed to ocean carbonate chemistry conditions of the past (pH 8.19; mid-1880s), present (pH 8.06), and near-future (pH 7.93; predicted for 2050) in the sub-Antarctic. After 3 days of exposure, calcification responses were quantified by calcein staining, shell weighing, and Micro-CT scanning. In pteropods exposed to past conditions, calcification occurred over the entire shell and the leading edge of the last whorl, whilst individuals incubated under present and near-future conditions mostly invested in extending their shells, rather than calcifying over their entire shell. Moreover, individuals exposed to past conditions formed larger shell volumes compared to present and future conditions, suggesting that calcification is already decreased in today's sub-Antarctic waters. Shells of individuals incubated under near-future conditions did not increase in shell weight during the incubation, and had a lower density compared to past and present conditions, suggesting that calcification will be further compromised in the future. This demonstrates the high sensitivity of L. retroversa to relatively small and short-term changes in carbonate chemistry. A reduction in calcification of L. retroversa in the rapidly acidifying waters of the sub-Antarctic will have a major impact on aragonite-CaCO3 export from oceanic surface waters to the deep sea.Thrombosis and Hemostasi

    Palaeobiology of Tetragonis sulcata d'Eichwald, 1860 : an Ordovician receptaculite in erratics from the northern Netherlands

    No full text
    A study has been made of the receptaculite Tetragonis sulcata d'Eichwald, 1860 in Upper Ordovician erratics from the northern Netherlands. D'Eichwald's original description is reviewed, giving a wider conception of the morphological diversity of receptaculites. Tetragonis sulcata is placed in the family Tetragonaceae Rietschel, 1969 (nomen correctum), together with Lepidolites dickhauti Ulrich, 1879. The aim of this study was to reconstruct the living receptaculite organism by documenting homologies between Tetragonis sulcata and receptaculites described in the literature. Through analysis of a diverse set of morphological features which thus were obtained, an attempt could be made to determine the pattern of receptaculite morphogenesis. This study therefore concentrates on the functional morphology, growth, and calcification of meroms which are extensively reviewed, particularly with respect to receptaculite growth. The geometry of merom distribution as a result of polar growth of receptaculites has been studied. A description is given of a merom arrangement not yet considered before, the Tetragonis type, which is compared with the normal, Receptaculites, type. Controversial issues, such as the position of soft parts in receptaculites as well as their life orientation, are discussed with regard to their palaeobiological significance. This approach produced some arguments against an apex-down orientation, as proposed by Campbell et al. (1974). Based on these data, the systematic position of receptaculites is analysed. Consequently, it is inferred that they should be regarded as calcareous algae. Comparison with representatives of the chlorophyte order Dasycladales provides sufficient arguments to establish the separate order Receptaculitales within the Thallophyta

    The seasonal distribution of living planktic foraminifera in the NW Arabian Sea.

    No full text
    corecore