625 research outputs found
A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing
Evolutionary relationships among birds in Neoaves, the clade comprising the
vast majority of avian diversity, have vexed systematists due to the ancient,
rapid radiation of numerous lineages. We applied a new phylogenomic approach to
resolve relationships in Neoaves using target enrichment (sequence capture) and
high-throughput sequencing of ultraconserved elements (UCEs) in avian genomes.
We collected sequence data from UCE loci for 32 members of Neoaves and one
outgroup (chicken) and analyzed data sets that differed in their amount of
missing data. An alignment of 1,541 loci that allowed missing data was 87%
complete and resulted in a highly resolved phylogeny with broad agreement
between the Bayesian and maximum-likelihood (ML) trees. Although results from
the 100% complete matrix of 416 UCE loci were similar, the Bayesian and ML
trees differed to a greater extent in this analysis, suggesting that increasing
from 416 to 1,541 loci led to increased stability and resolution of the tree.
Novel results of our study include surprisingly close relationships between
phenotypically divergent bird families, such as tropicbirds (Phaethontidae) and
the sunbittern (Eurypygidae) as well as between bustards (Otididae) and turacos
(Musophagidae). This phylogeny bolsters support for monophyletic waterbird and
landbird clades and also strongly supports controversial results from previous
studies, including the sister relationship between passerines and parrots and
the non-monophyly of raptorial birds in the hawk and falcon families. Although
significant challenges remain to fully resolving some of the deep relationships
in Neoaves, especially among lineages outside the waterbirds and landbirds,
this study suggests that increased data will yield an increasingly resolved
avian phylogeny.Comment: 30 pages, 1 table, 4 figures, 1 supplementary table, 3 supplementary
figure
Two Hamlets: questioning romanticism in Turgenev’s Bazarov and Sleptsov’s Riazanov
The article examines the presentation of the protagonist as alienated radical activist in the novels "Отцы и дети" (Fathers and Sons) and "Трудное время" (Hard Times). Both Turgenev and Sleptsov draw on ideological and social questions of the day, yet each also creates a protagonist situated within a literary contex
A Reference Genome For The Nectar-Robbing Black-Throated Flowerpiercer (Diglossa Brunneiventris)
Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10x linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates
Habitat association predicts genetic diversity and population divergence in amazonian birds
© 2017 by The University of Chicago. The ecological traits of organisms may predict their genetic diversity and population genetic structure and mediate the action of evolutionary processes important for speciation and adaptation. Making these ecological-evolutionary links is difficult because it requires comparable genetic estimates from many species with differing ecologies. In Amazonian birds, habitat association is an important component of ecological diversity. Here, we examine the link between habitat association and genetic parameters using 20 pairs of closely related Amazonian bird species in which one member of the pair occurs primarily in forest edge and floodplains and the other occurs in upland forest interior. We use standardized geographic sampling and data from 2,416 genomic markers to estimate genetic diversity, population genetic structure, and statistics reflecting demographic and evolutionary processes. We find that species of upland forest have greater genetic diversity and divergence across the landscape as well as signatures of older histories and less gene flow than floodplain species. Our results reveal that species ecology in the form of habitat association is an important predictor of genetic diversity and population divergence and suggest that differences in diversity between floodplain and upland avifaunas in the Amazon may be driven by differences in the demographic and evolutionary processes at work in the two habitats
Harriet Tubman - Melissa Waddy Thibodeaux
Melissa Waddy-Thibodeaux (Actor/Playwright/Drama Instructor) has performed for over 40 years in various venues throughout the U.S. Her experience working with children and young adults, stems back to 1988 at the Ensemble Theatre where she worked closely with the late George Hawkins. She began the first children’s theater and began touring it in the early 1990’s to schools and libraries in and around the Houston area
- …