308 research outputs found

    Coherent Control of Quantum Chaotic Diffusion

    Full text link
    Extensive coherent control over quantum chaotic diffusion using the kicked rotor model is demonstrated and its origin in deviations from random matrix theory is identified. Further, the extent of control in the presence of external decoherence is established. The results are relevant to both areas of quantum chaos and coherent control.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Hydrodynamic View of Wave-Packet Interference: Quantum Caves

    Get PDF
    Wave-packet interference is investigated within the complex quantum Hamilton-Jacobi formalism using a hydrodynamic description. Quantum interference leads to the formation of the topological structure of quantum caves in space-time Argand plots. These caves consist of the vortical and stagnation tubes originating from the isosurfaces of the amplitude of the wave function and its first derivative. Complex quantum trajectories display counterclockwise helical wrapping around the stagnation tubes and hyperbolic deflection near the vortical tubes. The string of alternating stagnation and vortical tubes is sufficient to generate divergent trajectories. Moreover, the average wrapping time for trajectories and the rotational rate of the nodal line in the complex plane can be used to define the lifetime for interference features.Comment: 4 pages, 3 figures (major revisions with respect to the previous version have been carried out

    The Importance of DNA Repair in Tumor Suppression

    Full text link
    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. We postulate that inactivation of post-methylation repair mechanisms are fundamental to the progression of a tumor cell and hence these mechanisms act as a method for prevention and destruction of cancerous genomes.Comment: 7 pages, 5 figures; Approximation replaced with exact calculation; Minor error corrected; Minor changes to model syste

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    Coherent Optimal Control of Multiphoton Molecular Excitation

    Full text link
    We give a framework for molecular multiphoton excitation process induced by an optimally designed electric field. The molecule is initially prepared in a coherent superposition state of two of its eigenfunctions. The relative phase of the two superposed eigenfunctions has been shown to control the optimally designed electric field which triggers the multiphoton excitation in the molecule. This brings forth flexibility in desiging the optimal field in the laboratory by suitably tuning the molecular phase and hence by choosing the most favorable interfering routes that the system follows to reach the target. We follow the quantum fluid dynamical formulation for desiging the electric field with application to HBr molecule.Comment: 5 figure

    Optimal Control of Quantum Dynamics : A New Theoretical Approach

    Full text link
    A New theoretical formalism for the optimal quantum control has been presented. The approach stems from the consideration of describing the time-dependent quantum system in terms of the real physical observables, viz., the probability density rho(x,t) and the quantum current j(x,t) which is well documented in the Bohm's hydrodynamical formulation of quantum mechanics. The approach has been applied for manipulating the vibrational motion of HBr in its ground electronic state under an external electric field.Comment: 4 figure

    Intermittency of glassy relaxation and the emergence of a non-equilibrium spontaneous measure in the aging regime

    Full text link
    We consider heat exchange processes between non-equilibrium aging systems (in their activated regime) and the thermal bath in contact. We discuss a scenario where two different heat exchange processes concur in the overall heat dissipation: a stimulated fast process determined by the temperature of the bath and a spontaneous intermittent process determined by the fact that the system has been prepared in a non-equilibrium state. The latter is described by a probability distribution function (PDF) that has an exponential tail of width given by a parameter λ\lambda, and satisfies a fluctuation theorem (FT) governed by that parameter. The value of λ\lambda is proportional to the so-called effective temperature, thereby providing a practical way to experimentally measure it by analyzing the PDF of intermittent events.Comment: Latex file, 8 pages + 5 postscript figure

    Electronic coherence dynamics in trans-polyacetylene oligomers

    Full text link
    Electronic decoherence processes in trans-polyacetylene oligomers are considered by explicitly computing the time dependent molecular polarization from the coupled dynamics of electronic and vibrational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers are described by the SSH Hamiltonian and the effect of decoherence is incorporated by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by sampling the Wigner distribution of the nuclear degrees of freedom. The decoherence for superpositions between the ground and excited and between pairs of excited states is considered for chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers the loss of coherence occurs in tens of femtoseconds. This timescale is determined by the initial decay of the nuclear overlap and by the decay of population into other electronic states, and is relatively insensitive to the type and class of superposition considered. By contrast, for smaller oligomers the decoherence timescale depends strongly on the initially selected superposition, with superpositions that can decay as fast as 50 fs and as slow as 250 fs. The long-lived superpositions are such that little population is transferred to other electronic states and for which the vibronic dynamics is relatively harmonic.Comment: Accepted for J. Chem. Phy

    Coherent Control of Isotope Separation in HD+ Photodissociation by Strong Fields

    Full text link
    The photodissociation of the HD+ molecular ion in intense short- pulsed linearly polarized laser fields is studied using a time- dependent wave-packet approach where molecular rotation is fully included. We show that applying a coherent superposition of the fundamental radiation with its second harmonic can lead to asymmetries in the fragment angular distributions, with significant differences between the hydrogen and deuterium distributions in the long wavelength domain where the permanent dipole is most efficient. This effect is used to induce an appreciable isotope separation.Comment: Physical Review Letters, 1995 (in press). 4 pages in revtex format, 3 uuencoded figures. Full postcript version available at: http://chemphys.weizmann.ac.il/~charron/prl.ps or ftp://scipion.ppm.u-psud.fr/coherent.control/prl.p
    corecore