9 research outputs found

    Lead halide perovskite solar cells

    Get PDF

    Structure-property relationships for bis-diketopyrrolopyrrole molecules in organic photovoltaics

    No full text
    \u3cp\u3eThe design of small organic molecules for efficient solution-processed organic solar cells is hampered by the absence of relationships that connect molecular structure via processing to blend morphology and power conversion efficiency. Here we study a series of bis-diketopyrrolopyrrole molecules in which we systematically vary the aromatic core, the solubilizing side chains, and the end groups to achieve power conversion efficiencies of 4.4%. By comparing the morphology and performance we attempt to identify and rationalize the structure-property relationships. We find that the tendency to aggregate or crystallize are important factors to control and that these require a subtle balance.\u3c/p\u3

    2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells

    No full text
    \u3cp\u3eMethylammonium lead halide perovskites used in photovoltaic devices are generally deposited from high boiling point solvents with low volatility such as N,N-dimethylformamide. The slow drying causes the formation of relatively large perovskite crystallites that enhance surface roughness and lead to pin holes between the crystallites. We show that the use of 2-methoxyethanol, which is a more volatile solvent, results in smaller crystals that still span the entire layer thickness. This improves the surface coverage of perovskite films, reduces the leakage current and increases the open-circuit voltage and fill factor of solar cells. P-I-N configuration solar cells, processed under ambient conditions from a triple anion (iodide, chloride, and acetate) lead precursor salt, provide an increase in the power conversion efficiency from 14.1% to 15.3% when N,N-dimethylformamide is replaced by 2-methoxyethanol as the solvent.\u3c/p\u3

    Monitoring thermal annealing of Perovskite solar cells with in situ photoluminescence

    No full text
    Layer deposition of organometal halide perovskites for solar cells usually involves tedious experimentation, in which numerous devices are tested to determine the ideal processing conditions. One of the important issues is determining the optimum time and temperature for thermal annealing of the perovskite layer. Here we demonstrate that in-situ photoluminescence allows to determine the optimal annealing procedure without fabricating complete solar cells. We use a deposition method in which dense layers of perovskite crystals are formed within seconds in ambient air by hot casting a mixture of lead acetate, lead chloride, and methylammonium iodide. The as-cast perovskite layers are highly luminescent because charge carriers are unable to reach the charge extraction layers that quench the photoluminescence. Thermal annealing enhances charge transport and quenches the photoluminescence, but deteriorates the photovoltaic performance via decomposition of the perovskite if applied for a too long time. We demonstrate that the optimal annealing time coincides with the time required for the in-situ measured photoluminescence intensity to reach its baseline value for annealing temperatures in the range of 80-100 °C. This results in efficient (>14%) perovskite solar cells and shows that in-situ photoluminescence is a simple but powerful tool for in-line quality monitoring of perovskite films

    The importance of moisture in hybrid lead halide perovskite thin film fabrication

    No full text
    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices

    Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating

    No full text
    \u3cp\u3eScalable sheet-to-sheet slot die coating processes have been demonstrated for perovskite solar cells and modules. The processes have been developed on 6 in. Ă— 6 in. glass/ITO substrates for two functional layers: the perovskite photo-active layer and the Spiro-OMeTAD hole transport layer. Perovskite solar cells produced using these slot die coating processes demonstrate device performances identical to the spin coated devices. All manufactured devices illustrate a high level of reproducibility. The developed slot die coating processes were also used for the manufacturing of perovskite PV modules. Large area modules of 12.5 Ă— 13.5 cm\u3csup\u3e2\u3c/sup\u3e were realized by slot die coating on 6 in. Ă— 6 in. substrates in combination with newly developed laser ablation processes for conventional P1-P2-P3 monolithic cell interconnections. The modules demonstrate power conversion efficiencies above 10%, with a power output of 1.7 W. This achievement is an important milestone in the development of up-scalable manufacturing technologies for perovskite PV modules.\u3c/p\u3

    The importance of moisture in hybrid lead halide perovskite thin film fabrication

    No full text
    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and self-healing of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices
    corecore