29 research outputs found

    Genetic networks governing synovial sarcoma development.

    No full text
    Contains fulltext : 49940.pdf (Publisher’s version ) (Open Access)RU Radboud Universiteit Nijmegen, 26 januari 2006Promotor : Geurts van Kessel, A.H.M.144 p

    Common origin of the human synovial sarcoma associated SS18 and SS18L1 gene loci.

    No full text
    Item does not contain fulltextThe highly conserved synovial sarcoma associated protein SS18 is thought to act as a transcriptional co-activator through interactions with various proteins involved in (epigenetic) gene regulation. The SS18 SNH domain appears to act as a major interface for these protein-protein interactions. Previously, we used this SNH domain to identify SS18 paralogs (SS18L1 and SS18L2) and orthologs in various species. The functional significance of these SS18-like proteins is embodied by the observations that SS18L1 and SS18L2 can replace SS18 in its various protein-protein interactions, and that SS18L1 may act as a fusion partner of SSX in synovial sarcoma. In the current study, we performed a comprehensive comparison of SNH-containing loci in several distinct species. By doing so, we found that the vertebrate SS18 and SS18L1 genes map within co-linear DNA segments that may have evolved through a relatively recent genomic duplication event. An additional phylogenetic study indicated that the more divergent SS18L2 gene is most likely derived from an earlier gene duplication event, again in the vertebrate lineage

    The (epi)genetics of human synovial sarcoma.

    No full text
    Contains fulltext : 53529.pdf (publisher's version ) (Closed access)Human synovial sarcomas are aggressive soft tissue tumors with relatively high rates of recurrences and metastases. They display a variable response to common treatment protocols such as radiation and chemotherapy. For the development of novel diagnostic, prognostic, and therapeutic approaches, detailed information on the molecular mechanisms underlying the development of these tumors is of imperative importance. Fusion of the SS18 and (one of the) SSX genes is a molecular hallmark of human synovial sarcomas. The SS18 and SSX genes encode nuclear proteins that exhibit opposite transcription regulatory activities, likely through epigenetic mechanisms. The SS18 protein functions as a transcriptional coactivator and interacts directly with members of the epigenetic chromatin remodeling and modification machineries. In contrast, the SSX proteins function as transcriptional corepressors and are associated with several Polycomb group proteins. Since the domains involved in these apparently opposite transcription regulatory activities are retained in the SS18-SSX fusion proteins, we hypothesize that these fusion proteins function as "activator-repressors" of transcription. The implications of this model for human synovial sarcoma development and future treatment are discussed

    Research in Action: Students' Perspectives on the Integration of Research Activities in Undergraduate Biomedical Curricula

    Get PDF
    Contains fulltext : 232188.pdf (Publisher’s version ) (Open Access)We describe and evaluate our practice-based learning approach for research in undergraduate students studying Biomedical Sciences at Radboud University Nijmegen, the Netherlands. First-year students who started their study between 2015 and 2018 actively participated in data collection and measurements, including anthropometry, electrocardiogram findings, genetic variants, and lifestyle habits. All data were entered into one anonymous database, which was used by students to analyze their research questions. In 2019, 44 of the 87 students (50%) valued active measurements better than questionnaires. Most students (strongly) agreed that they have learned about data collection and were inspired to learn more about biomedical research

    Mapping and characterization of the mouse and human SS18 genes, two human SS18-like genes and a mouse Ss18 pseudogene.

    No full text
    We have previously isolated and characterized a mouse cDNA orthologous to the human synovial sarcoma associated SS18 (formerly named SSXT and SYT) cDNA. Here, we report the characterization of the genomic structure of the mouse Ss18 gene. Through in silico methods with sequence information contained in the public databases, we did the same for the human SS18 gene and two human SS18 homologous genes, SS18L1 and SS18L2. In addition, we identified a mouse Ss18 processed pseudogene and mapped it to chromosome 1, band A2-3. The mouse Ss18 gene, which is subject to extensive alternative splicing, is made up of 11 exons, spread out over approximately 45 kb of genomic sequence. The human SS18 gene is also composed of 11 exons with similar intron-exon boundaries, spreading out over about 70 kb of genomic sequence. One alternatively spliced exon, which is not included in the published SS18 cDNA, corresponds to a stretch of sequence which we previously identified in the mouse Ss18 cDNA. The human SS18L1 gene, which is also made up of 11 exons with similar intron-exon boundaries, was mapped to chromosome 20 band q13.3. The smaller SS18L2 gene, which is composed of three exons with similar boundaries as the first three exons of the other three genes, was mapped to chromosome 3 band p21. Through sequence and mutation analyses this gene could be excluded as a candidate gene for 3p21-associated renal cell cancer. In addition, we created a detailed BAC map around the human SS18 gene, placing it unequivocally between the CA-repeat marker AFMc014wf9 and the dihydrofolate reductase pseudogene DHFRP1. The next gene in this map, located distal to SS18, was found to be the TBP associated factor TAFII-105 (TAF2C2). Further analogies between the mouse Ss18 gene, the human SS18 gene and its two homologous genes were found in the putative promoter fragments. All four promoters resemble the promoters of housekeeping genes in that they are TATA-less and embedded in canonical CpG islands, thus explaining the high and widespread expression of the SS18 genes

    SSX cancer testis antigens are expressed in most multiple myeloma patients: co-expression of SSX1, 2, 4, and 5 correlates with adverse prognosis and high frequencies of SSX-positive PCs.

    No full text
    Contains fulltext : 48545.pdf (publisher's version ) (Closed access)Cancer testis antigens (CTAs) are tumor-specific antigens that may be useful targets for cancer vaccines. Here, CTA expression was examined in multiple myeloma (MM), a B-cell cancer characterized by malignant plasma cells (PCs) in the bone marrow (BM), and monoclonal gammopathy of undetermined significance (MGUS), a condition that can progress to MM. We screened a panel of patient BMs at different stages of malignancy for CTA expression by reverse transcription polymerase chain reaction RT-PCR. Here, SSX (synovial sarcoma, X chromosome) emerged as a promising candidate for an MM vaccine, having a profile similar to currently studied CTA, NY-ESO-1, and MAGE. SSX1, 2, 4, and 5 expression was studied further in 114 MM (total SSX, 61% of patients; SSX1, 42%; SSX2, 23%; SSX4, 38%; SSX5, 35%), 45 MGUS (total SSX, 24% of patients; SSX1, 9%; SSX4, 20%), and 12 control (0/12, 0%) subjects. Several expression patterns were observed, the most predominant being co-expression of SSX1, 2, 4, and 5 (called group A expression, in 20% of MM), which correlated with reduced survival (P=0.0006). Of the four genes, SSX2 had the strongest association with reduced survival (P=0.0001). SSX protein expression ranged from 13.5% of PCs in an SSX1/SSX4 co-expressor to as high as 88% of PCs in group A expressor, exceeding reported frequencies of NY-ESO-1 and MAGE in MM. In single PCs from group A patients, we detected variable degrees of SSX co-expression, emphasizing the heterogeneity of CTA expression within tumor cell populations. These results demonstrate that SSX is a frequently expressed CTA in MM and highlight its potential as an MM vaccine candidate
    corecore