1,142 research outputs found

    The impact of reduction of doublet well spacing on the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets

    Get PDF
    This paper evaluates the impact of reduction of doublet well spacing, below the current West Netherlands Basin standard of 1000 to 1500 m, on the Net Present Value (NPV) and the life time of fluvial Hot Sedimentary Aquifer (HSA) doublets. First, a sensitivity analysis is used to show the possible advantage of such reduction on the NPV. The parameter value ranges are derived from West Netherlands Basin HSA doublet examples. The results indicate that a reduction of well spacing from 1400 to 1000 m could already influence NPV by up to 15%. This effect would be larger in more marginally economic HSA doublets compared to the West Netherlands Basin base case scenario. The possibility to reduce well spacing is supported by finite element production simulations, utilizing detailed facies architecture models. Furthermore, our results underline the necessity of detailed facies architecture models to assess the potential and risks of HSA doublets. This factor significantly affects doublet life time and net energy production of the doublet

    The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs

    Get PDF
    AbstractA three-dimensional model is used to study the influence of facies heterogeneity on energy production under different operational conditions of low-enthalpy geothermal doublet systems. Process-based facies modelling is utilised for the Nieuwerkerk sedimentary formation in the West Netherlands Basin to construct realistic reservoir models honouring geological heterogeneity. A finite element based reservoir simulator is used to model the fluid flow and heat transfer over time. A series of simulations is carried out to examine the effects of reservoir heterogeneity (Net-to-Gross ratio, N/G) on the life time and the energy recovery rate for different discharge rates and the production temperature (Tmin) above which the doublet is working. With respect to the results, we propose a design model to estimate the life time and energy recovery rate of the geothermal doublet. The life time is estimated as a function of N/G, Tmin and discharge rate, while the design model for the energy recovery rate is only a function of N/G and Tmin. Both life time and recovery show a positive relation with an increasing N/G. Further our results suggest that neglecting details of process-based facies modelling may lead to significant errors in predicting the life time of low-enthalpy geothermal systems for N/G values below 70%

    Regional Societies: Fostering Competitive Research Through Virtual Infrastructures

    Get PDF
    The MidSouth Computational Biology and Bioinformatics Society (MCBIOS) describes its efforts to provide local opportunities for researchers to learn and connect with colleague

    A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Get PDF
    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed

    INL Seismic Monitoring Annual Report: January 1, 2011 - December 31, 2011

    Get PDF
    During 2011, the Idaho National Laboratory Seismic Monitoring Program evaluated 21,928 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 2,063 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these events, 16 were small-to-moderate size earthquakes ranging in magnitude (M) from 3.0 to 4.4. Within the 161-km radius, the majority of 941 earthquakes (M < 4.4) occurred in the active regions of the Basin and Range Province with only six microearthquakes occurring in the Snake River Plain. In the northern and southeastern Basin and Range, eight earthquake swarms occurred and included over 325 events. Five of the Snake River Plain earthquakes were located within and near the northern and southern ends of the Great Rift volcanic rift zone. All have anomalously deep focal depths (16 to 38 km) and waveforms indicative of fluid movement at mid- and lower-crustal levels and are a continuation of activity observed at Craters of the Moon National Monument since 2007. Since 1972, the Idaho National Laboratory has recorded 55 small-magnitude microearthquakes (M = 2.2) within the eastern Snake River Plain and 25 deep microearthquakes (M = 2.3) in the vicinity of Craters of the Moon National Monument

    Improved ventricular function during inhalation of PGI(2) aerosol partly relies on enhanced myocardial contractility

    Get PDF
    Inhaled prostacyclin (PGI(2)) aerosol induces selective pulmonary vasodilation. Further, it improves right ventricular ( RV) function, which may largely rely on pulmonary vasodilation, but also on enhanced myocardial contractility. We investigated the effects of the inhaled PGI(2) analogs epoprostenol (EPO) and iloprost (ILO) on RV function and myocardial contractility in 9 anesthetized pigs receiving aerosolized EPO (25 and 50 ng center dot kg(-1) center dot min(-1)) and, consecutively, ILO (60 ng center dot kg(-1) center dot min(-1)) for 20 min each. We measured pulmonary artery pressure ( PAP), RV ejection fraction (RVEF) and RV end-diastolic-volume (RV-EDV), and left ventricular end-systolic pressure-volume-relation (end-systolic elastance, E-es). EPO and ILO reduced PAP, increased RVEF and reduced RVEDV. E-es was enhanced during all doses tested, which reached statistical significance during EPO25ng and ILO, but not during EPO50ng. PGI(2) aerosol enhances myocardial contractility in healthy pigs, contributing to improve RV function. Copyright (C) 2005 S. Karger AG, Basel

    Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia

    Get PDF
    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia
    corecore