13 research outputs found

    The Nrf2 Pathway in Depressive Disorders: A Systematic Review of Animal and Human Studies

    No full text
    There is increasing interest in the involvement of antioxidative systems in protecting from depression. Among these, Nrf2 occupies a central place. We aimed to review the role of Nrf2 in depression. For this reason, we conducted a PubMed search using as search strategy (psychiatr*[ti] OR schizo*[ti] OR psychot*[ti] OR psychos*[ti] OR depress*[ti] OR MDD[ti] OR BD[ti] OR bipolar[ti] OR Anxiety[ti] OR antidepress*[ti] OR panic[ti] OR obsess*[ti] OR compulsio*[ti] OR “mood disord*”[ti] OR phobi*[ti] OR agoraphob*[ti] OR anorex*[ti] OR anorect*[ti] OR bulimi*[ti] OR “eating disorder*”[ti] OR neurodevelopm*[ti] OR retardation[ti] OR autism[ti] OR autistic[ti] OR ASM[ti] OR adhd[ti] OR “attention-deficit”[ti]) AND nrf2, which on the 9th of March produced 208 results of which 89 were eligible for our purposes. Eligible articles were studies reporting data of Nrf2 manipulations or content by any treatment in human patients or animals with any animal model of depression. Most studies were on mice only (N = 58), 20 on rats only, and three on both rats and mice. There were two studies on cell lines (in vitro) and one each on nematodes and fish. Only four studies were conducted in humans, one of which was post mortem. Most studies were conducted on male animals; however, human studies were carried out on both men and women. The results indicate that Nrf2 is lower in depression and that antidepressant methods (drugs or other methods) increase it. Antioxidant systems and plasticity-promoting molecules, such as those in the Nrf2–HO-1, BDNF–TrkB, and cyclic AMP–CREB pathways, could protect from depression, while glycogen synthase kinase-3β and nuclear factor κB oppose these actions, thus increasing depressive-like behaviours. Since Nrf2 is also endowed with tumorigenic and atherogenic potential, the balance between benefits and harms must be taken into account in designing novel drugs aiming at increasing the intracellular content of Nrf2

    The Nrf2 Pathway in Depressive Disorders: A Systematic Review of Animal and Human Studies

    No full text
    There is increasing interest in the involvement of antioxidative systems in protecting from depression. Among these, Nrf2 occupies a central place. We aimed to review the role of Nrf2 in depression. For this reason, we conducted a PubMed search using as search strategy (psychiatr*[ti] OR schizo*[ti] OR psychot*[ti] OR psychos*[ti] OR depress*[ti] OR MDD[ti] OR BD[ti] OR bipolar[ti] OR Anxiety[ti] OR antidepress*[ti] OR panic[ti] OR obsess*[ti] OR compulsio*[ti] OR “mood disord*”[ti] OR phobi*[ti] OR agoraphob*[ti] OR anorex*[ti] OR anorect*[ti] OR bulimi*[ti] OR “eating disorder*”[ti] OR neurodevelopm*[ti] OR retardation[ti] OR autism[ti] OR autistic[ti] OR ASM[ti] OR adhd[ti] OR “attention-deficit”[ti]) AND nrf2, which on the 9th of March produced 208 results of which 89 were eligible for our purposes. Eligible articles were studies reporting data of Nrf2 manipulations or content by any treatment in human patients or animals with any animal model of depression. Most studies were on mice only (N = 58), 20 on rats only, and three on both rats and mice. There were two studies on cell lines (in vitro) and one each on nematodes and fish. Only four studies were conducted in humans, one of which was post mortem. Most studies were conducted on male animals; however, human studies were carried out on both men and women. The results indicate that Nrf2 is lower in depression and that antidepressant methods (drugs or other methods) increase it. Antioxidant systems and plasticity-promoting molecules, such as those in the Nrf2–HO-1, BDNF–TrkB, and cyclic AMP–CREB pathways, could protect from depression, while glycogen synthase kinase-3β and nuclear factor κB oppose these actions, thus increasing depressive-like behaviours. Since Nrf2 is also endowed with tumorigenic and atherogenic potential, the balance between benefits and harms must be taken into account in designing novel drugs aiming at increasing the intracellular content of Nrf2

    The comparative analysis of homologous fresh frozen bone and autogenous bone graft, associated or not with autogenous bone marrow, in rabbit calvaria: a clinical and histomorphometric study

    No full text
    The aim of this study was to evaluate the potential of fresh frozen homologous and autogenous grafts, associated or not with autogenous bone marrow, to form bone. Sixty titanium cylinders were used, and were fixed to the skulls of 30 rabbits. These cylinders were filled with (A) autogenous bone (AM) autogenous bone associated with the bone marrow (H) fresh frozen homologous bone (HM) fresh frozen homologous bone associated with the bone marrow (M) pure autogenous bone marrow and (C) blood clot. the animals were sacrificed after 02 and 03 months. After clinical evaluation, the samples were stained with hematoxylin, eosin and Mallory Trichrome dyes for optical microscopy analysis and histomorphometric analysis. Experimental groups that received mineralized materials (A, AM, H, HM) showed the best bone formation results, presenting no statistical difference between them (P > 0.05). Groups that did not receive mineralized materials (M and C) showed the worst results (P < 0.05), but the M group showed better results than the C group. Most of the autogenous and homologous bone particles were resorbed and there was a larger amount of residual particles in the homologous graft (H, HM) when compared with the autogenous graft (A, AM; P < 0.05). These findings suggest that fresh frozen homologous grafts produced similar amounts of new bone when compared with the autogenous grafts. However, the amount of residual bone particles was larger in the homogenous groups, which may indicate a slower remodeling process. the homologous fresh frozen bone seems to be a good osteoconductive material. the use of only autogenous bone marrow showed better results when compared to the bood clot. However, this research indicates that association with mineralized materials is required.Sao Leopoldo Mand Dent Sch, Campinas, SP, BrazilUniversidade Federal de SĂŁo Paulo, Sch Med, SĂŁo Paulo, BrazilUniv Santo Amaro, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Sch Med, SĂŁo Paulo, BrazilWeb of Scienc
    corecore