144 research outputs found

    Mortality and morbidity related to hepatitis C virus infection in hospitalized adults-A propensity score matched analysis

    Full text link
    The World Health Organization (WHO) aims to reduce HCV mortality, but estimates are difficult to obtain. We aimed to identify electronic health records of individuals with HCV infection, and assess mortality and morbidity. We applied electronic phenotyping strategies on routinely collected data from patients hospitalized at a tertiary referral hospital in Switzerland between 2009 and 2017. Individuals with HCV infection were identified using International Classification of Disease (ICD)-10 codes, prescribed medications and laboratory results (antibody, PCR, antigen or genotype test). Controls were selected using propensity score methods (matching by age, sex, intravenous drug use, alcohol abuse and HIV co-infection). Main outcomes were in-hospital mortality and attributable mortality (in HCV cases and study population). The non-matched dataset included records from 165,972 individuals (287,255 hospital stays). Electronic phenotyping identified 2285 stays with evidence of HCV infection (1677 individuals). Propensity score matching yielded 6855 stays (2285 with HCV, 4570 controls). In-hospital mortality was higher in HCV cases (RR 2.10, 95%CI 1.64 to 2.70). Among those infected, 52.5% of the deaths were attributable to HCV (95%CI 38.9 to 63.1). When cases were matched, the fraction of deaths attributable to HCV was 26.9% (HCV prevalence: 33%), whilst in the non-matched dataset, it was 0.92% (HCV prevalence: 0.8%). In this study, HCV infection was strongly associated with increased mortality. Our methodology may be used to monitor the efforts towards meeting the WHO elimination targets and underline the importance of electronic cohorts as a basis for national longitudinal surveillance

    Hepatitis C virus dynamics among intravenous drug users suggest that an annual treatment uptake above 10% would eliminate the disease by 2030.

    Get PDF
    In Switzerland, the prevalence of hepatitis C virus (HCV) among people who inject drugs (PWID) has been decreasing owing to active harm reduction efforts and an aging population. Recent advances in HCV therapeutics may provide an opportunity to direct treatment to high-risk populations, with a goal of reducing HCV prevalence and preventing new infections. In order to guide these efforts, the current project was undertaken with the following aims: (1) to develop a simple model to estimate the number of new HCV infections using available data on PWID; (2) to examine the impact of intervention strategies (prevention and treatment) on new and total HCV infections among PWID. A dynamic HCV transmission model was used to track HCV incidence and prevalence among active PWID according to their harm reduction status. The relative impact of treating 1, 5, 10 or 15% of HCV+ PWID with new oral direct acting antivirals was considered. In 2015, there were an estimated 10 160 active PWID in Switzerland, more than 85% of whom were engaged in harm reduction programmes. Approximately 42% of active PWID were HCV-RNA+, with 55 new viraemic infections occurring annually. By 2030, a 60% reduction in the HCV+ PWID population would be expected. In the absence of behavioural changes, the number of secondary infections would increase under all treatment scenarios. With high level treatment, the number of secondary infections would peak and then drop, corresponding to depletion of the viral pool. In Switzerland, 5% treatment of the 2015 HCV+ PWID population per year would result in a 95% reduction in total cases by 2030, whereas ≥10% treatment would result in a >99% reduction. Timely treatment of hepatitis C virus among people who inject drugs is necessary to reduce the prevalence and prevent new infections in Switzerland

    Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways

    Get PDF
    Besides degrading aberrant mRNAs that harbor a premature translation termination codon (PTC), nonsense-mediated mRNA decay (NMD) also targets many seemingly "normal" mRNAs that encode for full-length proteins. To identify a bona fide set of such endogenous NMD targets in human cells, we applied a meta-analysis approach in which we combined transcriptome profiling of knockdowns and rescues of the three NMD factors UPF1, SMG6 and SMG7. We provide evidence that this combinatorial approach identifies NMD-targeted transcripts more reliably than previous attempts that focused on inactivation of single NMD factors. Our data revealed that SMG6 and SMG7 act on essentially the same transcripts, indicating extensive redundancy between the endo- and exonucleolytic decay routes. Besides mRNAs, we also identified as NMD targets many long non-coding RNAs as well as miRNA and snoRNA host genes. The NMD target feature with the most predictive value is an intron in the 3' UTR, followed by the presence of upstream open reading frames (uORFs) and long 3' UTRs. Furthermore, the 3' UTRs of NMD-targeted transcripts tend to have an increased GC content and to be phylogenetically less conserved when compared to 3' UTRs of NMD insensitive transcripts

    Chronic Hepatitis C Treatment in Patients with Drug Injection History: Findings of the INTEGRATE Prospective, Observational Study.

    Get PDF
    INTRODUCTION: People who inject drugs represent an under-treated chronic hepatitis C virus (HCV)-infected patient population. METHODS: INTEGRATE was a prospective, observational study investigating the effectiveness, safety, and adherence in routine clinical practice to telaprevir in combination with peg-interferon and ribavirin (Peg-IFN/RBV) in patients with history of injecting drug use chronically infected with genotype 1 HCV. RESULTS: A total of 46 patients were enrolled and included in the intent-to-treat (ITT) population. Among heroin and/or cocaine users (n = 37; 80%), 22% reported use in the past month; 74% (34/46) of patients were on opioid substitution therapy in the pre-treatment phase, and 43% (20/46) discontinued HCV treatment prematurely. Sustained virologic response rate was 54% (25/46) in the ITT population and 74% (25/34) in the per protocol (evaluable-for-effectiveness) population. The main reason for failure in the ITT analysis was loss to follow-up (n = 8; 17%). Adverse events occurred in 91% (42/46) of patients. Mean patient-reported adherence to study drugs was >89% at Week 4, Week 12 and end of treatment. CONCLUSION: Despite a high rate of treatment discontinuation (including loss to follow-up), self-reported adherence to treatment was good and virologic cure rates were similar to those reported in large real-world cohorts. Our findings suggest that people with a history of injecting drug use should be considered for treatment of chronic HCV infection, and highlight the need for improvements in patient support to boost retention in care and, in turn, help to prevent reinfection and transmission. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov identifier, NCT01980290. FUNDING: Janssen Pharmaceuticals

    A powerful bursting radio source towards the Galactic Centre

    Full text link
    Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.Comment: 16 pages including 3 figures. Appears in Nature, 3 March 200

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres

    Uranium isotope cycling on the highly productive Peruvian margin

    Get PDF
    Uranium isotopes (δ238U values) in ancient sedimentary rocks (shales, carbonate rocks) are widely used as a tool to reconstruct paleo-redox conditions, but the behaviour of U isotopes under modern non-sulfidic anoxic vs. oxic conditions remains poorly constrained. We present U concentration and isotope data for modern sediments from the Peruvian margin, a highly productive open ocean environment with a range of redox conditions. To investigate U in different host fractions of the sediment (reactive, silicate, and HNO3-soluble fraction), we conducted a series of sequential extractions. Detrital-corrected authigenic U isotope compositions (δ238Uauth) in sediments deposited beneath an oxic water column show little deviation from the dissolved seawater U source, while anoxically deposited sediments have δ238Uauth values that are up to 0.4‰ heavier compared to seawater δ238U. Under anoxic, non-euxinic conditions, the U isotope offset between sediment and seawater is larger compared with oxic, but significantly smaller when compared with euxinic conditions from the literature. The results from sequential extractions show that the reactive sediment fraction records more pronounced differences in δ238Ureactive than δ238Uauth values depending on the oxidation state of the overlying water column. Furthermore, we found a strong correlation between total organic carbon (TOC) and both U concentrations (Uauth) and δ238Uauth values (R2 = 0.70 and 0.94, respectively) at the persistently anoxic site that we examined. These correlations can be caused by several processes including U isotope fractionation during microbially-mediated U reduction at the sediment-water interface (diffusive U input), during sorption onto and/or incorporation into organic matter in the water column (particulate U input) and diagenetic redistribution of U, or a combination of these processes. Our data show that several factors can influence δ238U values including oxidation state of U, the presence or absence of hydrogen sulfide and organic matter. These findings add new constraints to the degree of U isotope fractionation associated with U incorporation into sediments in different low-oxygen environments, thus aiding in interpretation of ancient paleo-redox conditions from U isotope data

    Biparatopic sybodies neutralize SARS-CoV-2 variants of concern and mitigate drug resistance

    Get PDF
    The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1,000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants

    Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages.

    Get PDF
    The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent

    Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants

    Get PDF
    Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival
    corecore