184 research outputs found

    Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA

    Get PDF
    The potential link between badgers and bovine tuberculosis has made it vital to develop accurate techniques to census badgers. Here we investigate the potential of using genetic profiles obtained from faecal DNA as a basis for population size estimation. After trialling several methods we obtained a high amplification success rate (89%) by storing faeces in 70% ethanol and using the guanidine thiocyanate/silica method for extraction. Using 70% ethanol as a storage agent had the advantage of it being an antiseptic. In order to obtain reliable genotypes with fewer amplification reactions than the standard multiple-tubes approach, we devised a comparative approach in which genetic profiles were compared and replication directed at similar, but not identical, genotypes. This modified method achieved a reduction in polymerase chain reactions comparable with the maximumlikelihood model when just using reliability criteria, and was slightly better when using reliability criteria with the additional proviso that alleles must be observed twice to be considered reliable. Our comparative approach would be best suited for studies that include multiple faeces from each individual. We utilized our approach in a well-studied population of badgers from which individuals had been sampled and reliable genotypes obtained. In a study of 53 faeces sampled from three social groups over 10 days, we found that direct enumeration could not be used to estimate population size, but that the application of mark–recapture models has the potential to provide more accurate results

    Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice

    Get PDF
    Policy makers and managers are increasingly called upon to assess the state of biodiversity, and make decisions regarding potential interventions. Genetic tools are well-recognised in the research community as a powerful approach to evaluate species and population status, reveal ecological and demographic processes, and inform nature conservation decisions. The wealth of genetic data and power of genetic methods are rapidly growing, but the consideration of genetic information and concerns in policy and management is limited by the currently low capacity of decision-makers to access and apply genetic resources. Here we describe a freely available, user-friendly online resource for decision-makers at local and national levels (http://congressgenetics.eu), which increases access to current knowledge, facilitates implementation of studies and interpretation of available data, and fosters collaboration between researchers and practitioners. This resource was created in partnership with conservation practitioners across the European Union, and includes a spectrum of taxa, ecosystems and conservation issues. Our goals here are to (1) introduce the rationale and context, (2) describe the specific tools (knowledge summaries, publications database, decision making tool, project planning tool, forum, community directory), and the challenges they help solve, and (3) summarise lessons learned. This article provides an outlook and model for similar efforts to build policy and management capacity. © 2013 Elsevier GmbH.ConGRESS is funded by European Commission grant FP7-ENV-2009-1 244250 (Knowledge Transfer and Uptake of EU Research Results

    Next-generation metrics for monitoring genetic erosion within populations of conservation concern

    Get PDF
    Genetic erosion is a major threat to biodiversity because it can reduce fitness and ultimately contribute to the extinction of populations. Here, we explore the use of quantitative metrics to detect and monitor genetic erosion. Monitoring systems should not only characterize the mechanisms and drivers of genetic erosion (inbreeding, genetic drift, demographic instability, population fragmentation, introgressive hybridization, selection) but also its consequences (inbreeding and outbreeding depression, emergence of large‐effect detrimental alleles, maladaptation and loss of adaptability). Technological advances in genomics now allow the production of data the can be measured by new metrics with improved precision, increased efficiency and the potential to discriminate between neutral diversity (shaped mainly by population size and gene flow) and functional/adaptive diversity (shaped mainly by selection), allowing the assessment of management‐relevant genetic markers. The requirements of such studies in terms of sample size and marker density largely depend on the kind of population monitored, the questions to be answered and the metrics employed. We discuss prospects for the integration of this new information and metrics into conservation monitoring programmes

    Enhancing knowledge of an endangered and elusive species, the okapi, using non-invasive genetic techniques

    Get PDF
    The okapi Okapia johnstoni is an endangered, even-toed ungulate in the family Giraffidae, and is endemic to the Democratic Republic of Congo (DRC). Okapi are highly elusive and very little is known about their behaviour and ecology in the wild. We used non-invasive genetic methods to examine the social structure, mating system and dispersal for a population of okapi in the Réserve de Faune à Okapis, DRC. Okapi individuals were found to be solitary, but genetically polygamous or promiscuous. There was no evidence for any close spatial association between large groups of related or unrelated okapi for either sex, but we did find evidence for male-biased dispersal. An isolation by distance pattern of genetic similarity was present, but appears to be operating just below the spatial scale of the area investigated in the present study. We describe how the analyses used here can infer aspects of behavioural ecology and discuss the strengths and limitations of these analyses. We therefore provide a guide for future studies using non-invasive genetics to investigate behavioural ecology of rare, elusive animals. This study furthers scientific knowledge about a species that has recently been recognized by the IUCN as endangered, and is a potentially important flagship species for Central Africa

    Anarchy in the UK: Detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellites

    Get PDF
    Anarchistic behaviour is a very rare phenotype of honeybee colonies. In an anarchistic colony, many workers’ sons are reared in the presence of the queen. Anarchy has previously been described in only two Australian colonies. Here we report on a first detailed genetic analysis of a British anarchistic colony. Male pupae were present in great abundance above the queen excluder, which was clearly indicative of extensive worker reproduction and is the hallmark of anarchy. Seventeen microsatellite loci were used to analyse these male pupae, allowing us to address whether all the males were indeed workers’ sons, and how many worker patrilines and individual workers produced them. In the sample, 95 of 96 of the males were definitely workers’ sons. Given that ≈ 1% of workers’ sons were genetically indistinguishable from queen’s sons, this suggests that workers do not move any queen-laid eggs between the part of the colony where the queen is present to the area above the queen excluder which the queen cannot enter. The colony had 16 patrilines, with an effective number of patrilines of 9.85. The 75 males that could be assigned with certainty to a patriline came from 7 patrilines, with an effective number of 4.21. They were the offspring of at least 19 workers. This is in contrast to the two previously studied Australian naturally occurring anarchist colonies, in which most of the workers’ sons were offspring of one patriline. The high number of patrilines producing males leads to a low mean relatedness between laying workers and males of the colony. We discuss the importance of studying such colonies in the understanding of worker policing and its evolution

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Genome\u2011wide diversity and runs of homozygosity in the \u201cBraque Fran\ue7ais, type Pyr\ue9n\ue9es\u201d dog breed

    Get PDF
    Objective: Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es is a French hunting-dog breed whose origin is traced back to old pointing gun-dogs used to assist hunters in finding and retrieving game. This breed is popular in France, but seldom seen elsewhere. Despite the ancient background, the literature on its genetic characterization is surprisingly scarce. A recent study looked into the demography and inbreeding using pedigree records, but there is yet no report on the use of molecular markers in this breed. The aim of this work was to genotype a population of Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es dogs with the high-density SNP array to study the genomic diversity of the breed. Results: The average observed (HO) and expected (HE) heterozygosity were 0.371 (\uc2\ub1 0.142) and 0.359 (\uc2\ub1 0.124). Effective population size (NE) was 27.5635 runs of homozygosity (ROH) were identified with average length of 2.16 MB. A ROH shared by 75% of the dogs was detected at the beginning of chromosome 22. Inbreeding coefficients from marker genotypes were in the range FIS= [- 0.127, 0.172]. Inbreeding estimated from ROH (FROH) had mean 0.112 (\uc2\ub1 0.023), with range [0.0526, 0.225]. These results show that the Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es breed is a relatively inbred population, but with still sufficient genetic variability for conservation and genetic improvement

    On the Origin of Indonesian Cattle

    Get PDF
    Background: Two bovine species contribute to the Indonesian livestock, zebu (Bos indicus) and banteng (Bos javanicus), respectively. Although male hybrid offspring of these species is not fertile, Indonesian cattle breeds are supposed to be of mixed species origin. However, this has not been documented and is so far only supported by preliminary molecular analysis. Methods and Findings: Analysis of mitochondrial, Y-chromosomal and microsatellite DNA showed a banteng introgression of 10-16% in Indonesian zebu breeds. East-Javanese Madura and Galekan cattle have higher levels of autosomal banteng introgression (20-30%) and combine a zebu paternal lineage with a predominant (Madura) or even complete (Galekan) maternal banteng origin. Two Madura bulls carried taurine Y-chromosomal haplotypes, presumably of French Limousin origin. In contrast, we did not find evidence for zebu introgression in five populations of the Bali cattle, a domestic form of the banteng. Conclusions: Because of their unique species composition Indonesian cattle represent a valuable genetic resource, which potentially may also be exploited in other tropical regions. © 2009 Mohamad et al
    corecore