355 research outputs found

    Predictive value of C-reactive protein and troponin T in patients with unstable angina: a comparative analysis

    Get PDF
    AbstractOBJECTIVESWe evaluated C-reactive protein (CRP) and troponin T (TnT) for predicting six-month cardiac risk in patients with unstable angina.BACKGROUNDTroponin T is predictive of cardiac risk in patients with unstable angina. The clinical implications of elevated CRP in such patients remains controversial.METHODSBaseline TnT and CRP values were determined in 447 patients with unstable angina enrolled in the placebo group of the Chimeric c7E3 AntiPlatelet Therapy in Unstable angina REfractory to standard treatment trial (CAPTURE) trial. All patients underwent a coronary intervention and were followed for a six month period in which 13 deaths and 47 myocardial infarctions were documented (MIs).RESULTSTroponin T was >0.1 μg/liter in 30% and CRP was >10 mg/L in 41% of the patients. For the initial 72-h period (including coronary intervention), TnT (17.4% vs. 4.2%; p < 0.001) but not CRP (10.3% vs. 8%; p = 0.41) was predictive of mortality and MI. The TnT-positive patients displayed more frequent recurrent instability before the planned intervention (44.8% vs. 16.9%; p < 0.001), but in the CRP-positive patients, no such increase was observed (25.9% vs. 24.8%; p = 0.92). In contrast, for the six month follow-up period, CRP was predictive of cardiac risk (mortality, MI) (18.9% vs. 9.5%; p = 0.003). Using multivariate analysis, both CRP and TnT emerged as independent predictors of mortality and MI at six- month follow-up. Furthermore, the incidence of coronary restenosis during six-month follow-up was not related to TnT status (3% vs. 4.5%; p = 0.49); however, it was significantly related to CRP status (7% vs. 2.3%; p = 0.03).CONCLUSIONSTroponin T, but not CRP, was predictive of cardiac risk during the initial 72-h period, whereas CRP was an independent predictor of both cardiac risk and repeated coronary revascularization (coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty) during six month follow-up

    Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use

    Get PDF
    We applied a N-15 dilution technique called Integrated Total Nitrogen Input (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7mg N pot(-1)) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2mgNpot(-1). Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55kgNha(-1)yr(-1). Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5-10kgNha(-1)yr(-1).Peer reviewe

    Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing

    Get PDF
    Proliferation of smooth muscle cells (SMCs) during neointima formation is prevented by drug-eluting stents. The replicative capacity of mammalian cells is enhanced by telomerase expression; however, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target are unknown. The present study investigated the mechanisms underlying the mitogenic function of telomerase, and tested the hypothesis that everolimus, which is commonly used on drug-eluting stents, suppresses SMC proliferation by targeting telomerase. Inhibition of neointima formation by everolimus was lost in mice overexpressing telomerase reverse transcriptase (TERT), indicating that repression of telomerase confers the anti-proliferative efficacy of everolimus. Everolimus reduced TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S-phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These effects were sensitive to inhibition by everolimus. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus, and further identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT

    Reimmunization increases contraceptive effectiveness of gonadotropin-releasing hormone vaccine (GonaCon-Equine) in freeranging horses (\u3ci\u3eEquus caballus\u3c/i\u3e): Limitations and side effects

    Get PDF
    Wildlife and humans are increasingly competing for resources worldwide, and a diverse, innovative, and effective set of management tools is needed. Controlling abundance of wildlife species that are simultaneously protected, abundant, competitive for resources, and in conflict with some stakeholders but beloved by others, is a daunting challenge. Free-ranging horses (Equus caballus) present such a conundrum and managers struggle for effective tools for regulating their abundance. Controlling reproduction of female horses presents a potential alternative. During 2009±2017, we determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine) both as a single immunization and subsequent reimmunization on reproduction and side effects in free-ranging horses. At a scheduled management roundup in 2009, we randomly assigned 57 adult mares to either a GonaCon-Equine treatment group (n = 29) or a saline control group (n = 28). In a second roundup in 2013, we administered a booster vaccination to these same mares. We used annual ground observations to estimate foaling proportions, social behaviors, body condition, and injection site reactions. We found this vaccine to be safe for pregnant females and neonates, with no overt deleterious behavioral side effects during the breeding season. The proportion of treated mares that foaled following a single vaccination was lower than that for control mares for the second (P = 0.03) and third (P = 0.08) post-treatment foaling seasons but was similar (P = 0.67) to untreated mares for the fourth season, demonstrating reversibility of the primary vaccine treatment. After two vaccinations, however, the proportion of females giving birth was lower (

    Oxidative Stress Accumulates in Adipose Tissue during Aging and Inhibits Adipogenesis

    Get PDF
    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction

    Effect of Silicon Content on Carbide Precipitation and Low-Temperature Toughness of Pressure Vessel Steels

    Get PDF
    Cr – Mn – Mo – Ni pressure vessel steels containing 0.54 and 1.55% Si are studied. Metallographic and fractographic analyses of the steels after tempering at 650 and 700°C are performed. The impact toughness at – 30°C and the hardness of the steels are determined. The mass fraction of the carbide phase in the steels is computed with the help of the J-MatPro 4.0 software

    Gas chromatography vs. quantum cascade laser-based N<sub>2</sub>O flux measurements using a novel chamber design

    Get PDF
    Recent advances in laser spectrometry offer new opportunities to investigate the soil–atmosphere exchange of nitrous oxide. During two field campaigns conducted at a grassland site and a willow field, we tested the performance of a quantum cascade laser (QCL) connected to a newly developed automated chamber system against a conventional gas chromatography (GC) approach using the same chambers plus an automated gas sampling unit with septum capped vials and subsequent laboratory GC analysis. Through its high precision and time resolution, data of the QCL system were used for quantifying the commonly observed nonlinearity in concentration changes during chamber deployment, making the calculation of exchange fluxes more accurate by the application of exponential models. As expected, the curvature values in the concentration increase was higher during long (60 min) chamber closure times and under high-flux conditions (FN2O &gt; 150 µg N m−2 h−1) than those values that were found when chambers were closed for only 10 min and/or when fluxes were in a typical range of 2 to 50 µg N m−2 h−1. Extremely low standard errors of fluxes, i.e., from  ∼  0.2 to 1.7 % of the flux value, were observed regardless of linear or exponential flux calculation when using QCL data. Thus, we recommend reducing chamber closure times to a maximum of 10 min when a fast-response analyzer is available and this type of chamber system is used to keep soil disturbance low and conditions around the chamber plot as natural as possible. Further, applying linear regression to a 3 min data window with rejecting the first 2 min after closure and a sampling time of every 5 s proved to be sufficient for robust flux determination while ensuring that standard errors of N2O fluxes were still on a relatively low level. Despite low signal-to-noise ratios, GC was still found to be a useful method to determine the mean the soil–atmosphere exchange of N2O on longer timescales during specific campaigns. Intriguingly, the consistency between GC and QCL-based campaign averages was better under low than under high N2O efflux conditions, although single flux values were highly scattered during the low efflux campaign. Furthermore, the QCL technology provides a useful tool to accurately investigate the highly debated topic of diurnal courses of N2O fluxes and its controlling factors. Our new chamber design protects the measurement spot from unintended shading and minimizes disturbance of throughfall, thereby complying with high quality requirements of long-term observation studies and research infrastructures
    • …
    corecore