45 research outputs found

    Effects of corn supplementation on serum and muscle microRNA profiles in horses

    Get PDF
    Laminitis associated with equine metabolic syndrome causes significant economic losses in the equine industry. Diets high in non-structural carbohydrates (NSC) have been linked to insulin resistance and laminitis in horses. Nutrigenomic studies analyzing the interaction of diets high in NSCs and gene expression regulating endogenous microRNAs (miRNA) are rare. This study\u27s objectives were to determine whether miRNAs from dietary corn can be detected in equine serum and muscle and its impacts on endogenous miRNA. Twelve mares were blocked by age, body condition score, and weight and assigned to a control (mixed legume grass hay diet) and a mixed legume hay diet supplemented with corn. Muscle biopsies and serum were collected on Days 0 and 28. Transcript abundances were analyzed using qRT-PCR for three plant-specific and 277 endogenous equine miRNAs. Plant miRNAs were found in serum and skeletal muscle samples with a treatment effect (p \u3c .05) with corn-specific miRNA being higher than control in serum after feeding. Endogenous miRNAs showed 12 different (p \u3c .05) miRNAs in equine serum after corn supplementation, six (eca-mir16, -4863p, -4865p, -126- 3p, -296, and -192) previously linked to obesity or metabolic disease. The results of our study indicate that dietary plant miRNAs can appear in circulation and tissues and may regulate endogenous genes

    Reimmunization increases contraceptive effectiveness of gonadotropin-releasing hormone vaccine (GonaCon-Equine) in freeranging horses (\u3ci\u3eEquus caballus\u3c/i\u3e): Limitations and side effects

    Get PDF
    Wildlife and humans are increasingly competing for resources worldwide, and a diverse, innovative, and effective set of management tools is needed. Controlling abundance of wildlife species that are simultaneously protected, abundant, competitive for resources, and in conflict with some stakeholders but beloved by others, is a daunting challenge. Free-ranging horses (Equus caballus) present such a conundrum and managers struggle for effective tools for regulating their abundance. Controlling reproduction of female horses presents a potential alternative. During 2009±2017, we determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine) both as a single immunization and subsequent reimmunization on reproduction and side effects in free-ranging horses. At a scheduled management roundup in 2009, we randomly assigned 57 adult mares to either a GonaCon-Equine treatment group (n = 29) or a saline control group (n = 28). In a second roundup in 2013, we administered a booster vaccination to these same mares. We used annual ground observations to estimate foaling proportions, social behaviors, body condition, and injection site reactions. We found this vaccine to be safe for pregnant females and neonates, with no overt deleterious behavioral side effects during the breeding season. The proportion of treated mares that foaled following a single vaccination was lower than that for control mares for the second (P = 0.03) and third (P = 0.08) post-treatment foaling seasons but was similar (P = 0.67) to untreated mares for the fourth season, demonstrating reversibility of the primary vaccine treatment. After two vaccinations, however, the proportion of females giving birth was lower (

    Comparison of an Antioxidant Source and Antioxidant Plus BCAA on Athletic Performance and Post Exercise Recovery of Horses

    Get PDF
    Antioxidant supplementation decreases postexercise oxidative stress but could also decrease muscle pro- tein synthesis. This study compared the effects of three diets: low antioxidant (control, CON), high an- tioxidant (AO), and branched-chain amino acid high antioxidant (BCAO) supplementation on postexercise protein synthesis and oxidative stress. We hypothesized that supplementing antioxidants with branched- chain amino acids(BCAA) would reduce oxidative stress without hindering muscle protein synthesis. Eigh- teen mixed-breed polo horses (11 mares and 7 geldings, with age range between 5 and 18 years, were on CON diet for 30 days (from day -45 until day 0) and then were assigned to one of the treatments after the first lactate threshold test (day 0, LT). LT were also conducted on days 15 and 30 of supplemenation. Ox- idative stress was assessed by measuring blood glutathione peroxidase, superoxide dismutase, and mal- ondialdehyde concentrations before 2 and 4 hours after each LT. Muscle biopsies were taken before and 4 hours after each LT and analyzed for gene expression of protein synthesis by RTqPCR. Data were analyzed by ANOVA and compared by least-square means. A reduction in oxidative stress occurred over time ( P \u3c .05), from day 0 to day 30. An up-regulation in the abundance of muscle protein mRNA transcripts was found for CD36, CPT1, PDK4, MYF5, and MYOG ( P \u3c .05) after all lactate threshold tests, without a treat- ment effect. A treatment-by-exercise effect was observed for MYOD1 ( P = .0041). Transcript abundance was upregulated in AO samples post exercise compared to other treatments. MYF6 exhibited a time-by- treatment effect ( P = .045), where abundance increased more in AO samples from day 0 to day 15 and 30 compared to other treatments. Transcript abundance for metabolic and myogenic genes was upreg- ulated in post exercise muscle samples with no advantage from supplementation of antioxidants with branched-chain amino acids compared to antioxidants alone

    Effects of immunization against bone morphogenetic protein-15 and growth differentiation factor-9 on ovarian function in mares

    Get PDF
    Currently there is no contraceptive vaccine that can cause permanent sterility in mares. This study investigates the effect of vaccination against oocyte-specific growth factors, Bone Morphogenetic Protein 15 (BMP-15) and Growth Differentiation Factor 9 (GDF-9), on ovarian function of mares. It was hypothesized that immunization against these growth factors would prevent ovulation and/or accelerate depletion of the oocyte reserve. For this study, 30 mares were randomly assigned to three groups (n=10/group) and vaccinated with BMP-15 or GDF-9 peptides conjugated to KLH and adjuvant, or a control of phosphate buffered saline and adjuvant. Horses received vaccinations at weeks 0, 6, 12, and 18. Ovarian activity and estrous behavior were evaluated 3 days a week via ultrasonography and interaction with a stallion. The study was initiated on March1, 2016. Upon evaluation of ovulation rate, the GDF-9 group did not have a difference (P=0.66) in ovulation rate when compared to controls (10.8 and 10.0 ovulations, respectively), but the number of ovulations in the BMP-15 group was less (P=0.02; 4.9 ovulations). Average follicle size prior to ovulation was less (P \u3c 0.0001) in both treatment groups compared to controls. Estrous behavior was altered in both the BMP-15 and GDF-9 groups compared to controls after the second vaccination (P=0.05 and 0.03, respectively). Although further research is required to determine the continued effects of vaccination against GDF-9 on ovulation rates, these results indicate that vaccination against BMP-15 and GDF-9 could serve as a contraceptive in wild horse populations

    Fertility Control Options for Management of Free-roaming Horse Populations

    Get PDF
    The management of free-roaming horses (Equus ferus) and burros (E. asinus) in the United States has been referred to as a “wicked problem” because, although there are population control options, societal values will ultimately determine what is acceptable and what is not. In the United States, free-roaming equids are managed by different types of organizations and agencies, and the landscapes that these animals inhabit vary widely in terms of access, size, topography, climate, natural resources, flora, and fauna. This landscape diversity, coupled with contemporary socioeconomic and political environments, means that adaptive management practices are needed to regulate these free-roaming populations. The Bureau of Land Management (BLM) currently manages free-roaming equids on 177 herd management areas in the United States by applying fertility control measures in situ and/or removing horses, which are either adopted by private individuals or sent to long-term holding facilities. The BLM off-range population currently includes \u3e50,000 animals and costs approximately $50 million USD per year to maintain; on-range equid numbers were estimated in March 2022 to be approximately 82,384. On-range populations can grow at 15–20% annually, and current estimates far exceed the designated appropriate management level of 26,715. To reduce population recruitment, managers need better information about effective, long-lasting or permanent fertility control measures. Because mares breed only once a year, fertility control studies take years to complete. Some contraceptive approaches have been studied for decades, and results from various trials can collectively inform future research directions and actions. Employing 1 or more fertility control tools in concert with removals offers the best potential for success. Active, iterative, cooperative, and thoughtful management practices can protect free-roaming horses while simultaneously protecting the habitat. Herein, we review contraceptive vaccines, intrauterine devices, and surgical sterilization options for controlling fertility of free-roaming horses. This review provides managers with a “fertility control toolbox” and guides future research

    Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME): Study protocol for a randomised controlled trial

    Get PDF
    Background: Abdominal aortic aneurysm (AAA) is a slowly progressive destructive process of the main abdominal artery. Experimental studies indicate that fibrates exert beneficial effects on AAAs by mechanisms involving both serum lipid modification and favourable changes to the AAA wall. Methods/design: Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME) is a multicentre, randomised, double-blind, placebo-controlled clinical trial to assess the effect of orally administered therapy with fenofibrate on key pathological markers of AAA in patients undergoing open AAA repair. A total of 42 participants scheduled for an elective open AAA repair will be randomly assigned to either 145 mg of fenofibrate per day or identical placebo for a minimum period of 2 weeks prior to surgery. Primary outcome measures will be macrophage number and osteopontin (OPN) concentration within the AAA wall as well as serum concentrations of OPN. Secondary outcome measures will include levels of matrix metalloproteinases and proinflammatory cytokines within the AAA wall, periaortic fat and intramural thrombus and circulating concentrations of AAA biomarkers. Discussion: At present, there is no recognised medical therapy to limit AAA progression. The FAME trial aims to assess the ability of fenofibrate to alter tissue markers of AAA pathology. Trial registration: Australian New Zealand Clinical Trials Registry, ACTRN12612001226897. Registered on 20 November 2012. © 2017 The Author(s)

    The Past, Present, and Future of Equine Science

    Get PDF
    A core group of 27 equine nutritionists and physiologists joined together in the late 1960s to formally address and enhance the direction of equine research, creating the Equine Nutrition and Physiology Soci- ety. In 2003, that growing society transformed into the Equine Science Society, which now serves as the preeminent, internationally recognized scientific equine organization. In recent years, it has been appre- ciated that equine science encompasses a wide range of focus areas, including exercise science, nutrition, genetics, reproductive physiology, teaching and extension, production and management, and mix of other specialties, qualified as biosciences. Additionally, trainees are highly valued in the society, with the clear understanding that young people are the future of equine science. Amongst tightening budgets, equine re- searchers must focus on timely dissemination of high-quality research studies and development of strong, interdisciplinary, cross-species, and multi-institutional collaborations to ensure sustainability of academic research programs. With a little creativity, equine science will continue to thrive for the betterment of the horse and all involved in the equine industry

    Reimmunization increases contraceptive effectiveness of gonadotropin-releasing hormone vaccine (GonaCon-Equine) in freeranging horses (\u3ci\u3eEquus caballus\u3c/i\u3e): Limitations and side effects

    Get PDF
    Wildlife and humans are increasingly competing for resources worldwide, and a diverse, innovative, and effective set of management tools is needed. Controlling abundance of wildlife species that are simultaneously protected, abundant, competitive for resources, and in conflict with some stakeholders but beloved by others, is a daunting challenge. Free-ranging horses (Equus caballus) present such a conundrum and managers struggle for effective tools for regulating their abundance. Controlling reproduction of female horses presents a potential alternative. During 2009±2017, we determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine) both as a single immunization and subsequent reimmunization on reproduction and side effects in free-ranging horses. At a scheduled management roundup in 2009, we randomly assigned 57 adult mares to either a GonaCon-Equine treatment group (n = 29) or a saline control group (n = 28). In a second roundup in 2013, we administered a booster vaccination to these same mares. We used annual ground observations to estimate foaling proportions, social behaviors, body condition, and injection site reactions. We found this vaccine to be safe for pregnant females and neonates, with no overt deleterious behavioral side effects during the breeding season. The proportion of treated mares that foaled following a single vaccination was lower than that for control mares for the second (P = 0.03) and third (P = 0.08) post-treatment foaling seasons but was similar (P = 0.67) to untreated mares for the fourth season, demonstrating reversibility of the primary vaccine treatment. After two vaccinations, however, the proportion of females giving birth was lower (

    Effects of immunization against bone morphogenetic protein-15 and growth differentiation factor-9 on ovarian function in mares

    Get PDF
    Currently there is no contraceptive vaccine that can cause permanent sterility in mares. This study investigates the effect of vaccination against oocyte-specific growth factors, Bone Morphogenetic Protein 15 (BMP-15) and Growth Differentiation Factor 9 (GDF-9), on ovarian function of mares. It was hypothesized that immunization against these growth factors would prevent ovulation and/or accelerate depletion of the oocyte reserve. For this study, 30 mares were randomly assigned to three groups (n=10/group) and vaccinated with BMP-15 or GDF-9 peptides conjugated to KLH and adjuvant, or a control of phosphate buffered saline and adjuvant. Horses received vaccinations at weeks 0, 6, 12, and 18. Ovarian activity and estrous behavior were evaluated 3 days a week via ultrasonography and interaction with a stallion. The study was initiated on March1, 2016. Upon evaluation of ovulation rate, the GDF-9 group did not have a difference (P=0.66) in ovulation rate when compared to controls (10.8 and 10.0 ovulations, respectively), but the number of ovulations in the BMP-15 group was less (P=0.02; 4.9 ovulations). Average follicle size prior to ovulation was less (P \u3c 0.0001) in both treatment groups compared to controls. Estrous behavior was altered in both the BMP-15 and GDF-9 groups compared to controls after the second vaccination (P=0.05 and 0.03, respectively). Although further research is required to determine the continued effects of vaccination against GDF-9 on ovulation rates, these results indicate that vaccination against BMP-15 and GDF-9 could serve as a contraceptive in wild horse populations
    corecore