7 research outputs found

    Significant Phonon Drag Enables High Power Factor in the AlGaN/GaN Two-Dimensional Electron Gas

    Get PDF
    In typical thermoelectric energy harvesters and sensors, the Seebeck effect is caused by diffusion of electrons or holes in a temperature gradient. However, the Seebeck effect can also have a phonon drag component, due to momentum exchange between charge carriers and lattice phonons, which is more difficult to quantify. Here, we present the first study of phonon drag in the AlGaN/GaN two-dimensional electron gas (2DEG). We find that phonon drag does not contribute significantly to the thermoelectric behavior of devices with ~100 nm GaN thickness, which suppress the phonon mean free path. However, when the thickness is increased to ~1.2 μ\mum, up to 32% (88%) of the Seebeck coefficient at 300 K (50 K) can be attributed to the drag component. In turn, the phonon drag enables state-of-the-art thermoelectric power factor in the thicker GaN film, up to ~40 mW m−1^{-1} K−2^{-2} at 50 K. By measuring the thermal conductivity of these AlGaN/GaN films, we show that the magnitude of the phonon drag can increase even when the thermal conductivity decreases. Decoupling of thermal conductivity and Seebeck coefficient could enable important advancements in thermoelectric power conversion with devices based on 2DEGs

    Automated Crystal Orientation Mapping in py4DSTEM using Sparse Correlation Matching

    Full text link
    Crystalline materials used in technological applications are often complex assemblies composed of multiple phases and differently oriented grains. Robust identification of the phases and orientation relationships from these samples is crucial, but the information extracted from the diffraction condition probed by an electron beam is often incomplete. We therefore have developed an automated crystal orientation mapping (ACOM) procedure which uses a converged electron probe to collect diffraction patterns from multiple locations across a complex sample. We provide an algorithm to determine the orientation of each diffraction pattern based on a fast sparse correlation method. We test the speed and accuracy of our method by indexing diffraction patterns generated using both kinematical and dynamical simulations. We have also measured orientation maps from an experimental dataset consisting of a complex polycrystalline twisted helical AuAgPd nanowire. From these maps we identify twin planes between adjacent grains, which may be responsible for the twisted helical structure. All of our methods are made freely available as open source code, including tutorials which can be easily adapted to perform ACOM measurements on diffraction pattern datasets.Comment: 14 pages, 7 figure

    Robust design of semi-automated clustering models for 4D-STEM datasets

    No full text
    Materials discovery and design require characterizing material structures at the nanometer and sub-nanometer scale. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM) resolves the crystal structure of materials, but many 4D-STEM data analysis pipelines are not suited for the identification of anomalous and unexpected structures. This work introduces improvements to the iterative Non-Negative Matrix Factorization (NMF) method by implementing consensus clustering for ensemble learning. We evaluate the performance of models during parameter tuning and find that consensus clustering improves performance in all cases and is able to recover specific grains missed by the best performing model in the ensemble. The methods introduced in this work can be applied broadly to materials characterization datasets to aid in the design of new materials

    Significant Phonon Drag Enables High Power Factor in the AlGaN/GaN Two-Dimensional Electron Gas

    No full text
    In typical thermoelectric energy harvesters and sensors, the Seebeck effect is caused by diffusion of electrons or holes in a temperature gradient. However, the Seebeck effect can also have a phonon drag component, due to momentum exchange between charge carriers and lattice phonons, which is more difficult to quantify. Here, we present the first study of phonon drag in the AlGaN/GaN two-dimensional electron gas (2DEG). We find that phonon drag does not contribute significantly to the thermoelectric behavior of devices with ∼100 nm GaN thickness, which suppresses the phonon mean free path. However, when the thickness is increased to ∼1.2 μm, up to 32% (88%) of the Seebeck coefficient at 300 K (50 K) can be attributed to the drag component. In turn, the phonon drag enables state-of-the-art thermoelectric power factor in the thicker GaN film, up to ∼40 mW m–1 K–2 at 50 K. By measuring the thermal conductivity of these AlGaN/GaN films, we show that the magnitude of the phonon drag can increase even when the thermal conductivity decreases. Decoupling of thermal conductivity and Seebeck coefficient could enable important advancements in thermoelectric power conversion with devices based on 2DEGs
    corecore