1,453 research outputs found

    Do Local Governments Engage in Strategic Property-Tax Competition?

    Get PDF
    This paper uses spatial econometric methods to investigate property-tax competition among local governments. The theoretical model is drawn from the literature on tax competition, in which local jurisdictions choose property-tax rates taking into account the migration of mobile capital in response to tax differentials. Using a "spatial lag" econometric model, the paper estimates the reaction function of the representative community, which relates the community's property-tax rate to its own characteristics and to the tax rates in competing communities. A nonzero reaction-function slope indicates the presence of strategic interaction in the choice of tax rates. The estimation uses cross-section data on property taxes and other socio-economic variables for cities in the Boston metropolitan area. The results, which are presented for two periods before and after imposition of Proposition 2 1/2 (a tax limitation measure), indicate the presence of strategic interaction.

    Dirac-Brueckner Hartree-Fock Approach: from Infinite Matter to Effective Lagrangians for Finite Systems

    Full text link
    One of the open problems in nuclear structure is how to predict properties of finite nuclei from the knowledge of a bare nucleon-nucleon interaction of the meson-exchange type. We point out that a promising starting point consists in Dirac-Brueckner-Hartree-Fock (DBHF) calculations us- ing realistic nucleon-nucleon interactions like the Bonn potentials, which are able to reproduce satisfactorily the properties of symmetric nuclear matter without the need for 3-body forces, as is necessary in non-relativistic BHF calculations. However, the DBHF formalism is still too com- plicated to be used directly for finite nuclei. We argue that a possible route is to define effective Lagrangians with density-dependent nucleon-meson coupling vertices, which can be used in the Relativistic Hartree (or Relativistic Mean Field (RMF)) or preferrably in the Relativistic Hartree- Fock (RHF) approach. The density-dependence is matched to the nuclear matter DBHF results. We review the present status of nuclear matter DBHF calculations and discuss the various schemes to construct the self-energy, which lead to differences in the predictions. We also discuss how effective Lagrangians have been constructed and are used in actual calculations. We point out that completely consistent calculations in this scheme still have to be performed.Comment: 16 pages, to be published in Journal of Physics G: Nuclear and Particle Physics, special issue

    The excess of negative over positive mesons produced by high energy photons

    Get PDF
    Mesons produced by the high energy photon beam from the University of California Radiation Laboratory 330 Mev synchrotron are found to show an excess of negatives over positives. (1) With a carbon target, observing mesons in the energy range 30-130 Mev at 90° to the photon beam, the ratio of negative to positive mesons is 1.7 ± 0.2 with no significant energy dependence

    Detection of the Crab Nebula using a Random Forest Analysis of the first TAIGA IACT Data

    Full text link
    The Tunka Advanced Instrument for Gamma- and cosmic-ray Astronomy (TAIGA) is a multicomponent experiment for the measurement of TeV to PeV gamma- and cosmic rays. Our goal is to establish a novel hybrid direct air shower technique, sufficient to access the energy domain of the long-sought Pevatrons. The hybrid air Cherenkov light detection technique combines the strengths of the HiSCORE shower front sampling array, and two \thicksim4 m class, \sim9.6 deg field of view Imaging Air Cherenkov Telescopes (IACTs). The HiSCORE array provides good angular and shower core position resolution, while the IACTs provide the image shape and orientation for gamma-hadron separation. In future, an additional muon detector will be used for hadron tagging at \ge 100 TeV energies. Here, only data from the first IACT of the TAIGA experiment are used. A random forest algorithm was trained using Monte Carlo (MC) simulations and real data, and applied to 85 h of selected observational data tracking the Crab Nebula at a mean zenith angle of 33.5 deg, resulting in a threshold energy of 6 TeV for this dataset. The analysis was performed using the gammapy package. A total of 163.5 excess events were detected, with a statistical significance of 8.5 sigma. The observed spectrum of the Crab Nebula is best fit with a power law above 6 TeV with a flux normalisation of (3.20±0.42)1010TeV1cm2s1)(3.20\pm0.42)\cdot10^{-10} TeV^{-1} cm^{-2} s^{-1}) at a reference energy of 13 TeV and a spectral index of 2.74±0.16-2.74\pm0.16.Comment: 8 pages, 9 figures, accepted by MNRA

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    Mean-Field Description of Fusion Barriers with Skyrme's Interaction

    Full text link
    Fusion barriers are determined in the framework of the Skyrme energy-density functional together with the semi-classical approach known as the Extended Thomas-Fermi method. The barriers obtained in this way with the Skyrme interaction SkM* turn out to be close to those generated by phenomenological models like those using the proximity potentials. It is also shown that the location and the structure of the fusion barrier in the vicinity of its maximum and beyond can be quite accurately described by a simple analytical form depending only on the masses and the relative isospin of target and projectile nucleus.Comment: 7 pages, latex, 5 figure

    Charge Symmetry Violation Effects in Pion Scattering off the Deuteron

    Full text link
    We discuss the theoretical and experimental situations for charge symmetry violation (CSV) effects in the elastic scattering of pi+ and pi- on deuterium (D) and 3He/3H. Accurate comparison of data for both types of targets provides evidence for the presence of CSV effects. While there are indications of a CSV effect in deuterium, it is much more pronounced in the case of 3He/3H. We provide a description of the CSV effect on the deuteron in terms of single- and double- scattering amplitudes. The Delta-mass splitting is taken into account. Theoretical predictions are compared with existing experimental data for pi-d scattering; a future article will speak to the pi-three nucleon case.Comment: 16 pages of RevTeX, 7 postscript figure

    Ground State Energy of the Low Density Bose Gas

    Full text link
    Now that the properties of low temperature Bose gases at low density, ρ\rho, can be examined experimentally it is appropriate to revisit some of the formulas deduced by many authors 4-5 decades ago. One of these is that the leading term in the energy/particle is 2π2ρa/m2\pi \hbar^2 \rho a/m, where aa is the scattering length. Owing to the delicate and peculiar nature of bosonic correlations, four decades of research have failed to establish this plausible formula rigorously. The only known lower bound for the energy was found by Dyson in 1957, but it was 14 times too small. The correct bound is proved here.Comment: 4 pages, Revtex, reference 12 change

    The Relationship of Coronal Mass Ejections to Streamers

    Get PDF
    We have examined images from the Large Angle Spectroscopic Coronagraph (LASCO) to study the relationship of Coronal Mass Ejections (CMEs) to coronal streamers. We wish to test the suggestion (Low 1996) that CMEs arise from flux ropes embedded in a streamer erupting, thus disrupting the streamer. The data span a period of two years near sunspot minimum through a period of increased activity as sunspot numbers increased. We have used LASCO data from the C2 coronagraph which records Thomson scattered white light from coronal electrons at heights between 1.5 and 6R_sun. Maps of the coronal streamers have been constructed from LASCO C2 observations at a height of 2.5R_sun at the east and west limbs. We have superposed the corresponding positions of CMEs observed with the C2 coronagraph onto the synoptic maps. We identified the different kinds of signatures CMEs leave on the streamer structure at this height (2.5R_sun). We find four types of CMEs with respect to their effect on streamers: 1. CMEs that disrupt the streamer 2. CMEs that have no effect on the streamer, even though they are related to it. 3. CMEs that create streamer-like structures 4. CMEs that are latitudinally displaced from the streamer. This is the most extensive observational study of the relation between CMEs and streamers to date. Previous studies using SMM data have made the general statement that CMEs are mostly associated with streamers, and that they frequently disrupt it. However, we find that approximately 35% of the observed CMEs bear no relation to the pre-existing streamer, while 46% have no effect on the observed streamer, even though they appear to be related to it. Our conclusions thus differ considerably from those of previous studies.Comment: Accepted, Journal of Geophysical Research. 8 figs, better versions at http://www.science.gmu.edu/~prasads/streamer.htm

    On the damping of virtual nucleon-pair formation in pseudoscalar meson theory

    Get PDF
    The modifications of the propagation characteristics of a nucleon which result from the presence of a strongly coupled mesonic self-field are estimated from the consideration of a simple subset of radiative corrections to the nucleon propagation function. It is found that reactive effects markedly inhibit nucleon pair formation so that the contributions from the pseudoscalar coupling term which do not involve nucleon pairs are strongly enhanced relative to those involving pair formation. In addition, the meson pair coupling term, which results from nonrelativistic approximations to the relativistic linear coupling term and is intimately connected with nucleon pair formation, is strongly damped. The relation of this result to the nonrelativistic theory of Wentzel is discussed
    corecore