759 research outputs found

    Paramagnetic reentrant effect in high purity mesoscopic AgNb proximity structures

    Full text link
    We discuss the magnetic response of clean Ag coated Nb proximity cylinders in the temperature range 150 \mu K < T < 9 K. In the mesoscopic temperature regime, the normal metal-superconductor system shows the yet unexplained paramagnetic reentrant effect, discovered some years ago [P. Visani, A. C. Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990)], superimposing on full Meissner screening. The logarithmic slope of the reentrant paramagnetic susceptibility chi_para(T) \propto \exp(-L/\xi_N) is limited by the condition \xi_N=n L, with \xi_N=\hbar v_F/2 \pi k_B T, the thermal coherence length and n=1,2,4. In wires with perimeters L=72 \mu m and L=130 \mu m, we observe integer multiples n=1,2,4. At the lowest temperatures, \chi_para compensates the diamagnetic susceptibility of the \textit{whole} AgNb structure.Comment: 4 pages, 4 figures (color

    One-dimensional Josephson arrays as superlattices for single Cooper pairs

    Full text link
    We investigate uniform one-dimensional arrays of small Josephson junctions (EJECE_J \ll E_C, EC=(2e)2/2CE_C = (2e)^2/2C) with a realistic Coulomb interaction U(x)=ECλexp(x/λ)U(x) = E_C \lambda \exp( - |x|/\lambda) (here λ1\lambda \gg 1 is the screening length in units of the lattice constant of the array). At low energies this system can be described in terms of interacting Bose particles (extra single Cooper pairs) on the lattice. With increasing concentration ν\nu of extra Cooper pairs, a crossover from the Bose gas phase to the Wigner crystal phase and then to the superlattice regime occurs. The phase diagram in the superlattice regime consists of commensurable insulating phases with ν=1/l\nu = 1/l (ll is integer) separated by superconducting regions where the current is carried by excitations with {\em fractional} electric charge q=±2e/lq = \pm 2e/l. The Josephson current through a ring-shaped array pierced by magnetic flux is calculated for all of the phases.Comment: 4 pages (LATEX), 2 figure

    J1J2J_1-J_2 Quantum Heisenberg Antiferromagnet: Improved Spin-Wave Theories Versus Exact-Diagonalization Data

    Full text link
    We reconsider the results cocerning the extreme-quantum S=1/2S=1/2 square-lattice Heisenberg antiferromagnet with frustrating diagonal couplings (J1J2J_1-J_2 model) drawn from a comparison with exact-diagonalization data. A combined approach using also some intrinsic features of the self-consistent spin-wave theory leads to the conclusion that the theory strongly overestimates the stabilizing role of quantum flutcuations in respect to the N\'{e}el phase in the extreme-quantum case S=1/2S=1/2. On the other hand, the analysis implies that the N\'{e}el phase remains stable at least up to the limit J2/J1=0.49J_{2}/J_{1} = 0.49 which is pretty larger than some previous estimates. In addition, it is argued that the spin-wave ansatz predicts the existence of a finite range (J2/J1<0.323J_{2}/J_{1}<0.323 in the linear spin-wave theory) where the Marshall-Peierls sigh rule survives the frustrations.Comment: 13 pages, LaTex, 7 figures on reques

    Photon-Assisted Transport Through Ultrasmall Quantum Dots: Influence of Intradot Transitions

    Full text link
    We study transport through one or two ultrasmall quantum dots with discrete energy levels to which a time-dependent field is applied (e.g., microwaves). The AC field causes photon-assisted tunneling and also transitions between discrete energy levels of the dot. We treat the problem by introducing a generalization of the rotating-wave approximation to arbitrarily many levels. We calculate the dc-current through one dot and find satisfactory agreement with recent experiments by Oosterkamp et al. . In addition, we propose a novel electron pump consisting of two serially coupled single-level quantum dots with a time-dependent interdot barrier.Comment: 16 pages, Revtex, 10 eps-figure

    New quantum phases in a one-dimensional Josephson array

    Full text link
    We examine the phase diagram of an ordered one-dimensional Josephson array of small grains. The average grain charge in such a system can be tuned by means of gate voltage. At small grain-to-grain conductance, this system is strongly correlated because of the charge discreteness constraint (Coulomb blockade). At the gate voltages in the vicinity of the charge degeneracy points, we find new phases equivalent to a commensurate charge density wave and to a repulsive Luttinger liquid. The existence of these phases can be probed through a special dependence of the Josephson current on the gate voltage.Comment: 4 pages, including 1 eps figur

    Bose-Einstein Condensation on inhomogeneous complex networks

    Full text link
    The thermodynamic properties of non interacting bosons on a complex network can be strongly affected by topological inhomogeneities. The latter give rise to anomalies in the density of states that can induce Bose-Einstein condensation in low dimensional systems also in absence of external confining potentials. The anomalies consist in energy regions composed of an infinite number of states with vanishing weight in the thermodynamic limit. We present a rigorous result providing the general conditions for the occurrence of Bose-Einstein condensation on complex networks in presence of anomalous spectral regions in the density of states. We present results on spectral properties for a wide class of graphs where the theorem applies. We study in detail an explicit geometrical realization, the comb lattice, which embodies all the relevant features of this effect and which can be experimentally implemented as an array of Josephson Junctions.Comment: 11 pages, 9 figure

    Theory of Spin polarized Tunneling in Superconducting Sr2RuO4

    Full text link
    A theory of tunneling conductance in ferromagnetic metal/insulator/triplet - supercondcutor junctions is presented for unitary and non-unitary spin triplet pairing states which are promising candidates for the superconducting paring symmetry of Sr2RuO4. As the magnitude of the exchange interaction in the ferromagnetic metal is increased, the conductance for the unitary pairing state below the energy gap is reduced in contrast to the case for the non-unitary pairing state

    Three-dimensional Josephson-junction arrays in the quantum regime

    Full text link
    We study the quantum phase transition properties of a three-dimensional periodic array of Josephson junctions with charging energy that includes both the self and mutual junction capacitances. We use the phase fluctuation algebra between number and phase operators, given by the Euclidean group E_2, and we effectively map the problem onto a solvable quantum generalization of the spherical model. We obtain a phase diagram as a function of temperature, Josephson coupling and charging energy. We also analyze the corresponding fluctuation conductivity and its universal scaling form in the vicinity of the zero-temperature quantum critical point.Comment: 9 pages, LATEX, three PostScript figures. Submitted to Phys. Rev. Let

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include

    Kondo-resonance, Coulomb blockade, and Andreev transport through a quantum dot

    Full text link
    We study resonant tunneling through an interacting quantum dot coupled to normal metallic and superconducting leads. We show that large Coulomb interaction gives rise to novel effects in Andreev transport. Adopting an exact relation for the Green's function, we find that at zero temperature, the linear response conductance is enhanced due to Kondo-Andreev resonance in the Kondo limit, while it is suppressed in the empty site limit. In the Coulomb blockaded region, on the other hand, the conductance is reduced more than the corresponding conductance with normal leads because large charging energy suppresses Andreev reflection.Comment: 3 pages Revtex, 4 Postscript figures, accepted for publication in Phys. Rev.
    corecore