820 research outputs found
Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.
Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio
Adiposity in early, middle and later adult life and cardiometabolic risk markers in later life; findings from the British regional heart study.
OBJECTIVES: This research investigates the associations between body mass index (BMI) at 21, 40-59, 60-79 years of age on cardiometabolic risk markers at 60-79 years. METHODS: A prospective study of 3464 British men with BMI measured at 40-59 and 60-79 years, when cardiometabolic risk was assessed. BMI at 21 years was ascertained from military records, or recalled from middle-age (adjusted for reporting bias); associations between BMI at different ages and later cardiometabolic risk markers were examined using linear regression. Sensitive period, accumulation and mobility life course models were devised for high BMI (defined as BMI≥75th centile) and compared with a saturated BMI trajectory model. RESULTS: At ages 21, 40-59 and 60-79 years, prevalences of overweight (BMI≥25 kg/m2) were 12%, 53%, 70%, and obesity (≥30 kg/m2) 1.6%, 6.6%, and 17.6%, respectively. BMI at 21 years was positively associated with serum insulin, blood glucose, and HbA1c at 60-79 years, with increases of 1.5% (95%CI 0.8,2.3%), 0.4% (0.1,0.6%), 0.3% (0.1,0.4%) per 1 kg/m2, respectively, but showed no associations with blood pressure or blood cholesterol. However, these associations were modest compared to those between BMI at 60-79 years and serum insulin, blood glucose and HbA1c at 60-79 years, with increases of 8.6% (8.0,9.2%), 0.7% (0.5,0.9%), and 0.5% (0.4,0.7%) per 1 kg/m2, respectively. BMI at 60-79 years was also associated with total cholesterol and blood pressure. Associations for BMI at 40-59 years were mainly consistent with those of BMI at 60-79 years. None of the life course models fitted the data as well as the saturated model for serum insulin. A sensitive period at 50 years for glucose and HbA1c and sensitive period at 70 years for blood pressure were identified. CONCLUSIONS: In this cohort of men who were thin compared to more contemporary cohorts, BMI in later life was the dominant influence on cardiovascular and diabetes risk. BMI in early adult life may have a small long-term effect on diabetes risk
Identification of Novel Variants of Metadherin in Breast Cancer
Metadherin (MTDH, also known as AEG-1, and Lyric) has been demonstrated to play a potential role in several significant aspects of tumor progression. It has been reported that overexpression of MTDH is associated with progression of disease and poorer prognosis in breast cancer. However, there are no studies to date assessing variants of the MTDH gene and their potential relationship with breast cancer susceptibility. Thus, we investigated all variants of the MTDH gene and explored the association of the variants with breast cancer development. Our cohort consisted of full-length gene sequencing of 108 breast cancer cases and 100 healthy controls; variants were detected in 11 breast cancer cases and 13 controls. Among the variants detected, 9 novel variants were discovered and 2 were found to be associated with the susceptibility of breast cancer. However, additional studies need to be conducted in larger sample sizes to validate these findings and to further investigate whether these variants are prognostic in breast cancer patients
Detection of Prion Protein in Urine-Derived Injectable Fertility Products by a Targeted Proteomic Approach
BACKGROUND: Iatrogenic transmission of human prion disease can occur through medical or surgical procedures, including injection of hormones such as gonadotropins extracted from cadaver pituitaries. Annually, more than 300,000 women in the United States and Canada are prescribed urine-derived gonadotropins for infertility. Although menopausal urine donors are screened for symptomatic neurological disease, incubation of Creutzfeldt-Jakob disease (CJD) is impossible to exclude by non-invasive testing. Risk of carrier status of variant CJD (vCJD), a disease associated with decades-long peripheral incubation, is estimated to be on the order of 100 per million population in the United Kingdom. Studies showing infectious prions in the urine of experimental animals with and without renal disease suggest that prions could be present in asymptomatic urine donors. Several human fertility products are derived from donated urine; recently prion protein has been detected in preparations of human menopausal gonadotropin (hMG). METHODOLOGY/PRINCIPAL FINDINGS: Using a classical proteomic approach, 33 and 34 non-gonadotropin proteins were identified in urinary human chorionic gonadotropin (u-hCG) and highly-purified urinary human menopausal gonadotropin (hMG-HP) products, respectively. Prion protein was identified as a major contaminant in u-hCG preparations for the first time. An advanced prion protein targeted proteomic approach was subsequently used to conduct a survey of gonadotropin products; this approach detected human prion protein peptides in urine-derived injectable fertility products containing hCG, hMG and hMG-HP, but not in recombinant products. CONCLUSIONS/SIGNIFICANCE: The presence of protease-sensitive prion protein in urinary-derived injectable fertility products containing hCG, hMG, and hMG-HP suggests that prions may co-purify in these products. Intramuscular injection is a relatively efficient route of transmission of human prion disease, and young women exposed to prions can be expected to survive an incubation period associated with a minimal inoculum. The risks of urine-derived fertility products could now outweigh their benefits, particularly considering the availability of recombinant products
Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs
Abstract
Background
This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome.
Methods
We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance
(
\u3c3
A
2
)
, rate of change in inbreeding (
\u394
F
), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles.
Results
Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain.
Conclusions
Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding
A New Method for the Characterization of Strain-Specific Conformational Stability of Protease-Sensitive and Protease-Resistant PrPSc
Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrPSc. However, PrPSc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrPSc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrPC and PrPSc by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrPSc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl]1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl]1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrPSc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrPSc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrPSc conformational stabilities of protease-resistant and protease-sensitive PrPSc and that it is a valuable tool for strain typing in natural hosts, such as humans and sheep
Mutation of pescadillo Disrupts Oligodendrocyte Formation in Zebrafish
Background: In vertebrates, the myelin sheath is essential for efficient propagation of action potentials along the axon shaft. Oligodendrocytes are the cells of the central nervous system that create myelin sheaths. During embryogenesis, ventral neural tube precursors give rise to oligodendrocyte progenitor cells, which divide and migrate throughout the central nervous system. This study aimed to investigate mechanisms that regulate oligodendrocyte progenitor cell formation. Methodology/Principal Findings: By conducting a mutagenesis screen in transgenic zebrafish, we identified a mutation, designated vu166, by an apparent reduction in the number of oligodendrocyte progenitor cells in the dorsal spinal cord. We subsequently determined that vu166 is an allele of pescadillo, a gene known to play a role in ribosome biogenesis and cell proliferation. We found that pescadillo function is required for both the proper number of oligodendrocyte progenitors to form, by regulating cell cycle progression, and for normal levels of myelin gene expression. Conclusions/Significance: Our data provide evidence that neural precursors require pes function to progress through th
Application of the health assessment questionnaire disability index to various rheumatic diseases
Purpose\ud
\ud
To investigate whether the Stanford Health Assessment Questionnaire Disability Index (HAQ-DI) can serve as a generic instrument for measuring disability across different rheumatic diseases and to propose a scoring method based on item response theory (IRT) modeling to support this goal.\ud
\ud
Methods\ud
\ud
The HAQ-DI was administered to a cross-sectional sample of patients with confirmed rheumatoid arthritis (n = 619), osteoarthritis (n = 125), or gout (n = 102). The results were analyzed using the generalized partial credit model as an IRT model.\ud
\ud
Results\ud
\ud
It was found that 4 out of 8 item categories of the HAQ-DI displayed substantial differential item functioning (DIF) over the three diseases. Further, it was shown that this DIF could be modeled using an IRT model with disease-specific item parameters, which produces measures that are comparable for the three diseases.\ud
\ud
Conclusion\ud
\ud
Although the HAQ-DI partially functioned differently in the three disease groups, the measurement regarding the disability level of the patients can be made comparable using IRT methods\u
Is there a relationship between pain intensity and postural sway in patients with non-specific low back pain?
Background
Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain.
Methods
Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n=11) was enrolled per pain score.
Results
Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio lateral direction and sway area were reached with an incremental change in NRS scores of two to three points.
Conclusions
COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation
A Novel Small Acid Soluble Protein Variant Is Important for Spore Resistance of Most Clostridium perfringens Food Poisoning Isolates
Clostridium perfringens is a major cause of food poisoning (FP) in developed countries. C. perfringens isolates usually induce the gastrointestinal symptoms of this FP by producing an enterotoxin that is encoded by a chromosomal (cpe) gene. Those typical FP strains also produce spores that are extremely resistant to food preservation approaches such as heating and chemical preservatives. This resistance favors their survival and subsequent germination in improperly cooked, prepared, or stored foods. The current study identified a novel α/β-type small acid soluble protein, now named Ssp4, and showed that sporulating cultures of FP isolates producing resistant spores consistently express a variant Ssp4 with an Asp substitution at residue 36. In contrast, Gly was detected at Ssp4 residue 36 in C. perfringens strains producing sensitive spores. Studies with isogenic mutants and complementing strains demonstrated the importance of the Asp 36 Ssp4 variant for the exceptional heat and sodium nitrite resistance of spores made by most FP strains carrying a chromosomal cpe gene. Electrophoretic mobility shift assays and DNA binding studies showed that Ssp4 variants with an Asp at residue 36 bind more efficiently and tightly to DNA than do Ssp4 variants with Gly at residue 36. Besides suggesting one possible mechanistic explanation for the highly resistant spore phenotype of most FP strains carrying a chromosomal cpe gene, these findings may facilitate eventual development of targeted strategies to increase killing of the resistant spores in foods. They also provide the first indication that SASP variants can be important contributors to intra-species (and perhaps inter-species) variations in bacterial spore resistance phenotypes. Finally, Ssp4 may contribute to spore resistance properties throughout the genus Clostridium since ssp4 genes also exist in the genomes of other clostridial species
- …