208 research outputs found

    Discontinuous hindcast simulations of estuarine bathymetric change : a case study from Suisun Bay, California

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Estuarine, Coastal and Shelf Science 93 (2011): 142-150, doi:10.1016/j.ecss.2011.04.004.Simulations of estuarine bathymetric change over decadal timescales require methods for idealization and reduction of forcing data and boundary conditions. Continuous simulations are hampered by computational and data limitations and results are rarely evaluated with observed bathymetric change data. Bathymetric change data for Suisun Bay, California span the 1867–1990 period with five bathymetric surveys during that period. The four periods of bathymetric change were modeled using a coupled hydrodynamic-sediment transport model operated at the tidal-timescale. The efficacy of idealization techniques was investigated by discontinuously simulating the four periods. The 1867–1887 period, used for calibration of wave energy and sediment parameters, was modeled with an average error of 37% while the remaining periods were modeled with error ranging from 23% to 121%. Variation in post-calibration performance is attributed to temporally variable sediment parameters and lack of bathymetric and configuration data for portions of Suisun Bay and the Delta. Modifying seaward sediment delivery and bed composition resulted in large performance increases for post-calibration periods suggesting that continuous simulation with constant parameters is unrealistic. Idealization techniques which accelerate morphological change should therefore be used with caution in estuaries where parameters may change on sub-decadal timescales. This study highlights the utility and shortcomings of estuarine geomorphic models for estimating past changes in forcing mechanisms such as sediment supply and bed composition. The results further stress the inherent difficulty of simulating estuarine changes over decadal timescales due to changes in configuration, benthic composition, and anthropogenic forcing such as dredging and channelization.This study was supported by the U.S Geological Survey’s Priority Ecosystems Science program, CALFED Bay/Delta Program, and the University of California Center forWater Resources

    Hindcasting of decadal-timescale estuarine bathymetric change with a tidal-timescale model

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research 114 (2009): F04019, doi:10.1029/2008JF001191.Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.This study was supported by the U.S. Geological Survey’s Priority Ecosystems Science program, CALFED Bay/Delta Program, and the University of California Center for Water Resources. Use of ROMS and the CSTMS was supported by the U.S. Geological Survey, with assistance from John Warner

    Influence of near-surface stratigraphy on coastal landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Coastal Research 20 (2004): 510-522, doi:10.2112/1551-5036(2004)020[0510:IONSOC]2.0.CO;2.Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3–4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.Generous support for this project was provided by Max Holden and Steve Yancho of Sleeping Bear Dunes National Lakeshore

    Improving treatment intensification to reduce cardiovascular disease risk: a cluster randomized trial

    Full text link
    Abstract Background Blood pressure, lipid, and glycemic control are essential for reducing cardiovascular disease (CVD) risk. Many health care systems have successfully shifted aspects of chronic disease management, including population-based outreach programs designed to address CVD risk factor control, to non-physicians. The purpose of this study is to evaluate provision of new information to non-physician outreach teams on need for treatment intensification in patients with increased CVD risk. Methods Cluster randomized trial (July 1-December 31, 2008) in Kaiser Permanente Northern California registry of members with diabetes mellitus, prior CVD diagnoses and/or chronic kidney disease who were high-priority for treatment intensification: blood pressure ≥ 140 mmHg systolic, LDL-cholesterol ≥ 130 mg/dl, or hemoglobin A1c ≥ 9%; adherent to current medications; no recent treatment intensification). Randomization units were medical center-based outreach teams (4 intervention; 4 control). For intervention teams, priority flags for intensification were added monthly to the registry database with recommended next pharmacotherapeutic steps for each eligible patient. Control teams used the same database without this information. Outcomes included 3-month rates of treatment intensification and risk factor levels during follow-up. Results Baseline risk factor control rates were high (82-90%). In eligible patients, the intervention was associated with significantly greater 3-month intensification rates for blood pressure (34.1 vs. 30.6%) and LDL-cholesterol (28.0 vs 22.7%), but not A1c. No effects on risk factors were observed at 3 months or 12 months follow-up. Intervention teams initiated outreach for only 45-47% of high-priority patients, but also for 27-30% of lower-priority patients. Teams reported difficulties adapting prior outreach strategies to incorporate the new information. Conclusions Information enhancement did not improve risk factor control compared to existing outreach strategies at control centers. Familiarity with prior, relatively successful strategies likely reduced uptake of the innovation and its potential for success at intervention centers. Trial registration ClinicalTrials.gov Identifier NCT00517686http://deepblue.lib.umich.edu/bitstream/2027.42/112310/1/12913_2012_Article_2076.pd

    Intellectual Property in Medical Imaging and Informatics: The Independent Inventor’s Perspective

    Get PDF
    While innovation and new product development is traditionally thought of as the exclusive domain of industry and academia, a large number of innovations in medicine and information technology have come from independent inventors, which account for almost 30% of new patents issued in the U.S. today. A large number of economic, political, and legal challenges exist within the current marketplace that serves as relative impediments to independent invention. This article explores the existing challenges facing the independent inventor and offers a number of recommendations and resources to facilitate independent inventors in their quest for innovation and entrepreneurship. The concept of “outsourcing innovation” is discussed as an alternative to the existing model of industry sponsored research and development (R&D), with the goal of combining the unique attributes and strengths of independent inventors and industry sponsors

    Signal Processing Research Program

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on fourteen research projects.Charles S. Draper Laboratory Contract DL-H-404158U.S. Navy - Office of Naval Research Grant N00014-89-J-1489National Science Foundation Grant MIP 87-14969Battelle LaboratoriesTel-Aviv University, Department of Electronic SystemsU.S. Army Research Office Contract DAAL03-86-D-0001The Federative Republic of Brazil ScholarshipSanders Associates, Inc.Bell Northern Research, Ltd.Amoco Foundation FellowshipGeneral Electric FellowshipNational Science Foundation FellowshipU.S. Air Force - Office of Scientific Research FellowshipU.S. Navy - Office of Naval Research Grant N00014-85-K-0272Natural Science and Engineering Research Council of Canada - Science and Technology Scholarshi

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    First attempt at measuring the CMB cross-polarization

    Full text link
    We compute upper limits on CMB cross-polarization by cross-correlating the PIQUE and Saskatoon experiments. We also discuss theoretical and practical issues relevant to measuring cross-polarization and illustrate them with simulations of the upcoming BOOMERanG 2002 experiment. We present a method that separates all six polarization power spectra (TT, EE, BB, TE, TB, EB) without any other "leakage" than the familiar EE-BB mixing caused by incomplete sky coverage. Since E and B get mixed, one might expect leakage between TE and TB, between EE and EB and between BB and EB - our method eliminates this by preserving the parity symmetry under which TB and EB are odd and the other four power spectra are even.Comment: Polarization movies can be found at http://www.hep.upenn.edu/~angelica/polarization.htm

    Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands

    Get PDF
    © The Author(s), 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Natural Hazards 63 (2012): 51-84, doi:10.1007/s11069-010-9622-6.Waters from the Atlantic Ocean washed southward across parts of Anegada, east-northeast of Puerto Rico, during a singular event a few centuries ago. The overwash, after crossing a fringing coral reef and 1.5 km of shallow subtidal flats, cut dozens of breaches through sandy beach ridges, deposited a sheet of sand and shell capped with lime mud, and created inland fields of cobbles and boulders. Most of the breaches extend tens to hundreds of meters perpendicular to a 2-km stretch of Anegada’s windward shore. Remnants of the breached ridges stand 3 m above modern sea level, and ridges seaward of the breaches rise 2.2–3.0 m high. The overwash probably exceeded those heights when cutting the breaches by overtopping and incision of the beach ridges. Much of the sand-and-shell sheet contains pink bioclastic sand that resembles, in grain size and composition, the sand of the breached ridges. This sand extends as much as 1.5 km to the south of the breached ridges. It tapers southward from a maximum thickness of 40 cm, decreases in estimated mean grain size from medium sand to very fine sand, and contains mud laminae in the south. The sand-and-shell sheet also contains mollusks—cerithid gastropods and the bivalve Anomalocardia—and angular limestone granules and pebbles. The mollusk shells and the lime-mud cap were probably derived from a marine pond that occupied much of Anegada’s interior at the time of overwash. The boulders and cobbles, nearly all composed of limestone, form fields that extend many tens of meters generally southward from limestone outcrops as much as 0.8 km from the nearest shore. Soon after the inferred overwash, the marine pond was replaced by hypersaline ponds that produce microbial mats and evaporite crusts. This environmental change, which has yet to be reversed, required restriction of a former inlet or inlets, the location of which was probably on the island’s south (lee) side. The inferred overwash may have caused restriction directly by washing sand into former inlets, or indirectly by reducing the tidal prism or supplying sand to post-overwash currents and waves. The overwash happened after A.D. 1650 if coeval with radiocarbon-dated leaves in the mud cap, and it probably happened before human settlement in the last decades of the 1700s. A prior overwash event is implied by an inland set of breaches. Hypothetically, the overwash in 1650–1800 resulted from the Antilles tsunami of 1690, the transatlantic Lisbon tsunami of 1755, a local tsunami not previously documented, or a storm whose effects exceeded those of Hurricane Donna, which was probably at category 3 as its eye passed 15 km to Anegada’s south in 1960.The work was supported in part by the Nuclear Regulatory Commission under its project N6480, a tsunami-hazard assessment for the eastern United States
    corecore