72 research outputs found

    SPIE OPTO, 2018

    Get PDF
    Indium-doped ZnO bulk crystals grown by the hydrothermal method are highly-conductive, with resistivity at 0.01 Ωcm at room temperature as revealed by Hall-effect measurement. In this paper we report on structural and optical properties of these crystals. The grown In:ZnO crystals have been studied by high resolution X-ray diffraction, micro-Raman scattering and low-temperature photoluminescence and cathodoluminescence. It was found that the c lattice parameter of the grown In:ZnO crystal expanded 0.06% with respect to the lithium-doped ZnO crystal seed, and the In-doped ZnO overgrew the seed crystal pseudomorphically but with high quality crystallinity; the X-ray rocking curves show the FWHM of the Zn face and O faces are only 0.05o and 0.1o; and the indium concentration in the crystal reaches the solubility limit. Raman spectra show strain relaxation gradually from the regrowth interface as well as a weak spectral feature at 723 cm-1. The peak at 312 cm-1 noticed in hydrothermally grown In:ZnO nanostructures does not appear in our In-doped crystals, indicating that this peak may be associated with specific defects (e.g. surface related) of the nanostructures. Photoluminescence measurements show that an indium donor bound exciton peak I9 (In0X) is the dominant peak in the PL spectrum, located at 3.3586 eV on the zinc face and 3.3577 eV on the oxygen face. Both of them deviated from the consensus literature value of 3.3567 eV, probably due to strain in the crystal induced by impuritie

    Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition

    Get PDF
    Temperature dependent magneto-transport measurements in magnetic fields of up to 12 Tesla were performed on thin film vanadium dioxide (VO2) across the metal-insulator transition (MIT). The Hall carrier density increases by 4 orders of magnitude at the MIT and accounts almost entirely for the resistance change. The Hall mobility varies little across the MIT and remains low, ~0.1cm2/V sec. Electrons are found to be the major carriers on both sides of the MIT. Small positive magnetoresistance in the semiconducting phase is measured

    The Effect of Disease Modifying Therapies on Disability Progression in Multiple Sclerosis: A Systematic Overview of Meta-Analyses

    Get PDF
    Background: Disease modifying therapy (DMT) efficacy trials make an essential contribution to the development of evidence-based clinical treatments and practices for people with multiple sclerosis (MS). Meta-analysis is a critical part of this process and provides a powerful tool to assess the effects of DMT on MS progression. However, although there have been several meta-analyses on the effect of DMT on MS disease progression, they often do not reach the same conclusions.Objective: Our aim was to better understand and contextualize the results of meta-analyses evaluating DMT, identify differences in methodology that might explain their differing conclusions, and highlight areas for future research that will improve our ability to develop clinical recommendations.Methods: We conducted an overview of systematic reviews with meta-analyses assessing the efficacy of DMT on disability progression in people with MS in PubMed (Medline) and the Cochrane Database of Systematic Reviews.Results: We included 22 meta-analyses in this overview: eight general (on >3 DMT), 11 specific (on ≤3 DMT), 2 that evaluated subsets, and 1 that evaluated long-term effects. We found that there is good evidence that DMT improve short-term (≤2–3 years) disability progression outcomes relative to placebo in people with relapsing-remitting MS. However, results varied substantially between meta-analyses, and there is little evidence of their efficacy in other populations or over longer periods. The relative effects of individual DMT also remain unclear. The variance in results between meta-analyses may be related to the substantial differences in inclusion criteria, which was reflected in the limited overlap in included studies, as well as the year of meta-analysis publication. Of the 123 total unique studies included in the general meta-analyses, 77 (62.6%) were included in only one meta-analysis. This incongruence was also evident in the included DMT. Six of the 16 (37.5%) DMT evaluated in the general meta-analyses were only included in one meta-analysis.Conclusions: Translating DMT efficacy studies into evidence-based clinical practice requires greater methodological consistency in meta-analyses, more data on the relative effects of DMT through head-to-head clinical trials, and better reporting of adverse events

    Dopant profiles in heavily doped ZnO

    Full text link

    Reclassification of Subspecies of \u3ci\u3eAcidovorax avenae\u3c/i\u3e as \u3ci\u3eA. Avenae\u3c/i\u3e (Manns 1905) emend., \u3ci\u3eA. cattleyae \u3c/i\u3e (Pavarino, 1911)comb.nov., \u3ci\u3eA. citrulli\u3c/i\u3e Schaad et al.,1978)comb.nov., and proposal of \u3ci\u3eA. oryzae \u3c/i\u3esp. nov.

    Get PDF
    The bacterium Acidovorax avenae causes disease in a wide range of economically important monocotyledonous and dicotyledonous plants, including corn, rice, watermelon, anthurium, and orchids.Genotypic and phenotypic relatedness among strains of phytopathogenic A. avenae sub sp. avenae, A. avenae sub sp. citrulli, A. avenae subsp. cattleyae and A. konjaci, as well as all other Acidovorax species, including A. facilis, the type strain of Acidovorax, was determined.The16s rDNA sequencing confirmed previous studies showing the environmental species to be very distant from the phytopathogenic species. DNA/DNA reassociation assays on the different strains of A. avenae revealed four(A, B, C, and D) distinct genotypes. Taxon A included six A. avenae subsp. avenaestrains from corn that had a mean reciprocal similarity of 81%; taxon B included six A. avenae sub sp. avenae strains from rice that had a mean reciprocal similarity of 97%; taxon C contained 11 A. avenae sub sp. citrulli strains from cucurbits (cantaloupe, watermelon, and pumpkin) that had a mean reciprocal similarity of 88%, and taxon D contained four A. avenae sub sp. cattleyae strains from orchids that had a mean similarity of 98%

    Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors

    Get PDF
    The phenomenon of persistent photoconductivity is elusive and has not been addressed to an extent to attract attention both in micro and nanoscale devices due to unavailability of clear material systems and device configurations capable of providing comprehensive information. In this work, we have employed a nanostructured (nanowire diameter 30–65 nm and 5 μm in length) ZnO-based metal–semiconductor–metal photoconductor device in order to study the origin of persistent photoconductivity. The current–voltage measurements were carried with and without UV illumination under different oxygen levels. The photoresponse measurements indicated a persistent conductivity trend for depleted oxygen conditions. The persistent conductivity phenomenon is explained on the theoretical model that proposes the change of a neutral anion vacancy to a charged state

    Platinum germanides for mid- and long-wave infrared plasmonics

    Get PDF
    Platinum germanides (PtGe) were investigated for infrared plasmonic applications. Layers of Pt and Ge were deposited and annealed. X-ray diffraction identified PtGe2 and Pt2Ge3 phases, and x-ray photoelectron spectroscopy determined vertical atomic composition profiles for the films. Complex permittivity spectra were measured by ellipsometry over the 2 to 15 mu m wavelength range. Surface plasmon polariton (SPP) characteristics such as propagation length and field penetration depth were calculated. Photon-to-SPP couplers in the form of 1D lamellar gratings were fabricated and characterized in the range 9 - 10.5 mu m via wavelength-dependent specular reflection spectra for multiple angles of incidence. The observed resonances compare well with calculated spectra for SPP excitation on PtGe2. Platinum germanides are CMOS compatible and may serve as SPP hosts for on-chip mid-IR plasmonic components with tighter field confinement than noble-metal hosts

    P-Type Doping and Devices Based on ZnO

    No full text
    Both n-type and p-type ZnO will be required for development of homojunction light-emitting diodes (LEDs) and laser diodes (LDs). It is easy to obtain strong n-type ZnO, but very difficult to create consistent, reliable, high-conductivity p-type material. The most natural choice of an acceptor dopant is N, substituting for O, and indeed several groups have been able to obtain p-type material by such doping. Surprisingly, however, other groups have also been successful with P and As, elements with much larger ionic radii than that of O. Although ZnO substrates are now available, most of the epitaxial p-type layers so far have been grown on sapphire, or other poorly-matched materials. The lowest p-type resistivity obtained up to now is about 0.5 Omega-cm, which should be sufficient for LED fabrication. In spite of the present availability of p-type ZnO, very few homojunction LEDs have been reported so far, to our knowledge; however, several good heterojunction LEDs have been demonstrated, fabricated with p-type layers composed of other materials. One such structure, with fairly strong 389-nm emission at 300 K, involves n-type ZnO and p-type AlGaN, grown on an SiC substrate. Also, an N+-ion implanted ZnO layer, deposited by chemical vapor deposition on Al9O3, exhibits 388-nm emission at 300 K and could be economical to produce. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Electrical Transport Properties in Zinc Oxide

    No full text
    This chapter contains sections titled: Introduction Hall-Effect Analysis Donor States and n-type Doping Hydrogen Acceptor States and p-type Doping Photoconductivity Summary Reference

    Electrical and Optical Properties of n-Type and p-Type ZnO

    No full text
    In recent years, ZnO has been proposed for new electronic and optoelectronic devices, such as transparent transistors and UV light-emitting diodes (LEDs). The LED application will require both n-type and p-type ZnO, but the latter is difficult to produce, and progress in this area will require a detailed knowledge of the various impurities and defects that affect the electrical and optical properties. The dominant donors in as-grown ZnO are usually thought to be interstitial H and substitutional AlZn, with activation energies of about 40 and 65 meV, respectively. However, interstitial Zn and its associated complexes may also contribute free electrons. The dominant acceptor, at least in vapor-phase-grown material, is the Zn vacancy; however, substitutional NO is also present, although sometimes passivated by H. To produce p-type ZnO, it is necessary to dope with acceptor-type impurities, and some success has been achieved with N, P, As, and Sb. However, only N has been proven to have simple substitutional character (NO), and more complicated acceptor structures, such as AsZn-2VZn, have been proposed for some of the other group V elements. Both homostructural and heterostructural UV LEDs have been fabricated, although not of high luminescent power so far. The main objective of this paper is to review the Hall-effect and photoluminescence results on n-type and p-type ZnO
    • …
    corecore