12 research outputs found
Recommended from our members
Benchmarking urine storage and collection conditions for evaluating the female urinary microbiome.
Standardized conditions for collection, preservation and storage of urine for microbiome research have not been established. We aimed to identify the effects of the use of preservative AssayAssure® (AA), and the effects of storage time and temperatures on reproducibility of urine microbiome results. We sequenced the V3-4 segment of the 16S rRNA gene to characterize the bacterial community in the urine of a cohort of women. Each woman provided a single voided urine sample, which was divided into aliquots and stored with and without AA, at three different temperatures (room temperature [RT], 4 °C, or -20 °C), and for various time periods up to 4 days. There were significant microbiome differences in urine specimens stored with and without AA at all temperatures, but the most significant differences were observed in alpha diversity (estimated number of taxa) at RT. Specimens preserved at 4 °C and -20 °C for up to 4 days with or without AA had no significant alpha diversity differences. However, significant alpha diversity differences were observed in samples stored without AA at RT. Generally, there was greater microbiome preservation with AA than without AA at all time points and temperatures, although not all results were statistically significant. Addition of AA preservative, shorter storage times, and colder temperatures are most favorable for urinary microbiome reproducibility
Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel
Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G) achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the materials adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials
The Present and Future of Biologically Inspired Adhesive Interfaces and Materials
The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed
High aspect ratio nanofibril materials
The present invention features linear and three-dimensional supramolecular materials self-assembled from block copolymers comprising oligo(ethylene sulfide) (OES). The block copolymers assemble into fibrils, micelles, or matrices. The fibrillar materials are sensitive to oxidation, which leads to decreased OES block hydrophobicity and crystallinity, and increased water solubility of the polymer constituents. Molecular loading options, coupled with oxidative sensitivity, allow implantable or injectable fibrillar suspensions or cross-linked three-dimensional matrices to demonstrate significant biomedical potential, especially in the context of extracellular and intracellular molecular delivery and applications related to infection and disease
Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel
Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched polyÂ(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (<i>G</i>′) achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material’s adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials
Crystalline Oligo(ethylene sulfide) Domains Define Highly Stable Supramolecular Block Copolymer Assemblies
With proper control over copolymer design and solvation conditions, self-assembled materials display impressive morphological variety that encompasses nanoscale colloids as well as bulk three-dimensional architectures. Here we take advantage of both hydrophobicity and crystallinity to mediate supramolecular self-assembly of spherical micellar, linear fibrillar, or hydrogel structures by a family of highly asymmetric poly(ethylene glycol)-b-oligo(ethylene sulfide) (PEG-OES) copolymers. Assembly structural polymorphism was achieved with modification of PEG-OES topology (linear versus multiarm) and with precise, monomer-by-monomer control of DES length. Notably, all three morphologies were accessed utilizing OES oligomers with degrees of polymerization as short as three. These exceptionally small assembly forming blocks represent the first application of ethylene sulfide oligomers in supramolecular materials. While the assemblies demonstrated robust aqueous stability over time, oxidation by hydrogen peroxide progressively converted ethylene sulfide residues to increasingly hydrophilic and amorphous sulfoxides and sulfones, causing morphological changes and permanent disassembly. We utilized complementary microscopic and spectroscopic techniques to confirm this chemical stimulus-responsive behavior in self-assembled PEG-OES colloidal dispersions and physical gels. In addition to inherent stimulus-responsive behavior, fibrillar assemblies demonstrated biologically relevant molecular delivery, as confirmed by the dose-dependent activation of murine bone marrow-derived dendritic cells following fibril-mediated delivery of the immunological adjuvant monophosphoryl lipid A. In physical gels composed of either linear or multiarm PEG-DES precursors, rheologic analysis also identified mechanical stimuli-responsive shear thinning behavior. Thanks to the facile preparation, user-defined morphology, aqueous stability, carrier functionality, and stimuli-responsive behaviors of PEG-OES supramolecular assemblies, our findings support a future role for these materials as injectable or implantable biomaterials
A Cationic Micelle Complex Improves CD8+ T Cell Responses in Vaccination Against Unmodified Protein Antigen
Nanoscale
carrier platforms promote immune responses to vaccination
by facilitating delivery of vaccine components to immunologically
relevant sites. The technique is particularly valuable for subunit
vaccination, in which coadministration of immunostimulatory adjuvant
is known to enhance immune responses to protein antigen. The fabrication
of polymer-based nanoparticle vaccines commonly requires covalent
attachment of vaccine components to the carrier surface. In contrast,
we here describe a cationic micelle vaccination platform in which
antigen and adjuvant loading is mediated by noncovalent molecular
encapsulation and electrostatic complexation. Cationic micelles were
generated through self-assembly of a polyarginine-conjugated polyÂ(ethylene
glycol)-<i>b</i>-polyÂ(propylene sulfide) (PEG–PPS)
diblock copolymer amphiphile, with or without encapsulation of monophosphoryl
lipid A (MPLA), an amphiphilic experimental vaccine adjuvant. Micelle
complexes were subsequently formed by complexation of ovalbumin (OVA)
and CpG-B oligodeoxynucleotide (a second experimental adjuvant) to
the cationic micelles. In a 35-day study in mouse, micelle-mediated
codelivery of OVA antigen and CpG-B enhanced cellular and humoral
responses to vaccination. These outcomes were highlighted in spleen
and lymph node CD8<sup>+</sup> T cells, with significantly increased
populations of IFNγ<sup>+</sup>, TNFα<sup>+</sup>, and
polyfunctional IFNγ<sup>+</sup> TNFα<sup>+</sup> cells.
Elevated cytokine production is a hallmark of robust cytotoxic T lymphocyte
(CTL) responses sought in next-generation vaccine technologies. Increased
production of OVA-specific IgG1, IgG2c, and IgG3 also confirmed micelle
enhancement of humoral responses. In a subsequent 35-day study, we
explored micelle-mediated vaccination against OVA antigen coadministered
with MPLA and CpG-B adjuvants. A synergistic effect of adjuvant coadministration
was observed in micelle-free vaccination but not in groups immunized
with micelle complexes. This outcome underlines the advantage of the
micelle carrier: we achieved optimal cellular and humoral responses
to vaccination by use of this nanoparticle platform with a single
adjuvant. In particular, enhanced CTL responses support future development
of the cationic micelle platform in experimental cancer vaccines and
for vaccination against reticent viral pathogens