12 research outputs found

    An activator of voltage-gated K+ channels Kv1.1 as a therapeutic candidate for episodic ataxia type 1

    Get PDF
    Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery

    Depressed transient outward potassium current density in catecholamine-depleted rat ventricular myocytes

    No full text
    The effect of catecholamine depletion (induced by prior treatment with reserpine) was studied in Wistar rat ventricular myocytes using whole cell voltage-clamp methods. Two calcium-independent outward currents, the transient outward potassium current (I(to)) and the sustained outward potassium current (I(sus)), were measured. Reserpine treatment decreased tissue norepinephrine content by 97%. Action potential duration in the isolated perfused heart was significantly increased in reserpine-treated hearts. In isolated ventricular myocytes, I(to) density was decreased by 49% in reserpine-treated rats. This treatment had no effect on I(sus). The I(to) steady-state inactivation-voltage relationship and recovery from inactivation remained unchanged, whereas the conductance-voltage activation curve for reserpine-treated rats was significantly shifted (6.7 mV) toward negative potentials. The incubation of myocytes with 10 microM norepinephrine for 7-10 h restored I(to), an effect that was abolished by the presence of actinomycin D. Norepinephrine (0.5 microM) had no effect on I(to). However, in the presence of both 0.5 microM norepinephrine and neuropeptide Y (0.1 microM), I(to) density was restored to its control value. These results suggest that the sympathetic nervous system is involved in I(to) regulation. Sympathetic norepinephrine depletion decreased the number of functional channels via an effect on the alpha-adrenergic cascade and norepinephrine is able to restore expression of I(to) channels

    Aβ(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β

    No full text
    International audienceAmyloid-β1-42 (Aβ) is thought to be a major mediator of the cognitive deficits in Alzheimer's disease (AD). The ability of Aβ to inhibit hippocampal long-term potentiation (LTP) provides a cellular correlate of this action but the underlying molecular mechanism is only partially understood. We report a prominent role for a signaling pathway involving caspase-3, Akt1 and glycogen synthase kinase-3β in this effect in rats and mice

    Regional Differences in Ca<sup>2+</sup> Signaling and Transverse-Tubules across Left Atrium from Adult Sheep

    No full text
    Cardiac excitation-contraction coupling can be different between regions of the heart. Little is known at the atria level, specifically in different regions of the left atrium. This is important given the role of cardiac myocytes from the pulmonary vein sleeves, which are responsible for ectopic activity during atrial fibrillation. In this study, we present a new method to isolate atrial cardiac myocytes from four different regions of the left atrium of a large animal model, sheep, highly relevant to humans. Using collagenase/protease we obtained calcium-tolerant atrial cardiac myocytes from the epicardium, endocardium, free wall and pulmonary vein regions. Calcium transients were slower (time to peak and time to decay) in free wall and pulmonary vein myocytes compared to the epicardium and endocardium. This is associated with lower t-tubule density. Overall, these results suggest regional differences in calcium transient and t-tubule density across left atria, which may play a major role in the genesis of atrial fibrillation

    Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus

    Get PDF
    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca(2+)-permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation
    corecore