112 research outputs found

    Insights into the biology of cord blood stem/progenitor cells

    Get PDF
    Objectives:ā€‚ To review information on cord blood banking and transplantation with respect to the authorā€™s studies, and in context of this field of investigation. Results:ā€‚ Cord blood transplantation has been successfully used to treat a number of malignant and nonā€malignant disorders. However, this technique is still associated with limited numbers of cells for transplantation, and with delayed engraftment of neutrophils and platelets. The field of cord blood transplantation will benefit from enhanced and mechanistically based information on haematopoietic stem cell function and potential means to enhance its effectiveness are reviewed. This includes notions concerning possibility of retrieving more cells from the placenta and cord blood, to expand haematopoietic stem cells ex vivo and to increase efficiency of homing and engraftment of these cells. Also discussed are cryopreservation and longā€term storage of cord blood haematopoietic and progenitor cells, and new laboratory findings and animal studies for nonā€haematopoietic uses of cord blood

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT

    Interaction of inflammatory cytokines and erythropoeitin in iron metabolism and erythropoiesis in anaemia of chronic disease

    Get PDF
    In chronic inflammatory conditions increased endogenous release of specific cytokines (TNFĪ±, IL-1, IL-6, IFNĪ³ and others) is presumed. It has been shown that those of monocyte lineage play a key role in cytokine expression and synthesis. This may be associated with changes in iron metabolism and impaired erythropoiesis and may lead to development of anaemia in patients with rheumatoid arthritis. Firstly, increased synthesis of acute phase proteins, like ferritin, during chronic inflammation is proposed as the way by which the toxic effect of iron and thereby the synthesis of free oxy-radicals causing the damage on the affected joints, may be reduced. This is associated with a shift of iron towards the mononuclear phagocyte system which may participate in the development of anaemia of chronic disease. Secondly, an inhibitory action of inflammatory cytokines (TNFĪ±, IL-1), on proliferation and differentiation of erythroid progenitors as well as on synthesis of erythropoietin has been shown, thereby also contributing to anaemia. Finally, chronic inflammation causes multiple, complex disturbances in the delicate physiologic equilibrium of interaction between cytokines and cells (erythroid progenitors, cells of mononuclear phagocyte system and erythropoietin producing cells) leading to development of anaemia of chronic disease (Fig. 1)
    • ā€¦
    corecore