7 research outputs found

    Evolving DNA repair synthetic lethality targets in cancer

    Get PDF
    DNA damage signaling response and repair (DDR) is a critical defense mechanism against genomic instability. Impaired DNA repair capacity is an important risk factor for cancer development. On the other hand, upregulation of DDR mechanisms is a feature of cancer chemotherapy and radiotherapy resistance. Advances in our understanding of DDR and its complex role in cancer has led to several translational DNA repair targeted investigations culminating in clinically viable precision oncology strategy using PARP inhibitors in breast, ovarian, pancreatic and prostate cancers. Whilst PARP directed synthetic lethality has improved outcomes for many patients, the lack of sustained clinical response and the development of resistance pose significant clinical challenges. Therefore, the search for additional DDR directed drug targets and novel synthetic lethality approaches is highly desirable and is an area of intense pre-clinical and clinical investigation. Here we provide an overview of the mammalian DNA repair pathways and then focus on current state of PARP inhibitors and other emerging DNA repair inhibitors for synthetic lethality in cancer

    Targeting DNA damage repair precision medicine strategies in cancer

    Get PDF
    DNA repair targeted therapeutics is a promising precision medicine strategy in cancer. The development and clinical use of PARP inhibitors has transformed lives for many patients with BRCA germline deficient breast and ovarian cancer as well as platinum sensitive epithelial ovarian cancers. However, lessons learnt from the clinical use of PARP inhibitors also confirm that not all patients respond either due to intrinsic or acquired resistance. Therefore, the search for additional synthetic lethality approaches is an active area of translational and clinical research. Here, we review the current clinical state of PARP inhibitors and other evolving DNA repair targets including ATM, ATR, WEE1 inhibitors and others in cancer

    Towards Personalized Management of Ovarian Cancer

    Get PDF
    Despite advances in surgery and chemotherapy, the overall outcomes for patients with advanced ovarian cancer remain poor. Although initial response rates to platinum-based chemotherapy is about 60–80%, most patients will have recurrence and succumb to the disease. However, a DNA repair–directed precision medicine strategy has recently generated real hope in improving survival. The clinical development of PARP inhibitors has transformed lives for many patients with BRCA germline-deficient and/or platinum-sensitive epithelial ovarian cancers. Antiangiogenic agents and intraperitoneal chemotherapy approaches may also improve outcomes in patients. Moreover, evolving immunotherapeutic opportunities could also positively impact patient outcomes. Here we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in ovarian cancer

    Targeting Mre11 overcomes platinum resistance and induces synthetic lethality in XRCC1 deficient epithelial ovarian cancers

    Get PDF
    Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n = 331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p = 0.002). In the ovarian cancer genome atlas (TCGA) cohort (n = 498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p < 0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n = 1259), Mre11 overexpression was associated with poor PFS (p = 0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer

    Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer

    Get PDF
    Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC

    Unravelling the clinicopathological and functional significance of replication protein A (RPA) heterotrimeric complex in breast cancers

    Get PDF
    Abstract Replication Protein A (RPA), a heterotrimeric complex consisting of RPA1, 2, and 3 subunits, is a single-stranded DNA (ssDNA)-binding protein that is critically involved in replication, checkpoint regulation and DNA repair. Here we have evaluated RPA in 776 pure ductal carcinomas in situ (DCIS), 239 DCIS that co-exist with invasive breast cancer (IBC), 50 normal breast tissue and 4221 IBC. Transcriptomic [METABRIC cohort (n = 1980)] and genomic [TCGA cohort (n = 1090)] evaluations were completed. Preclinically, RPA deficient cells were tested for cisplatin sensitivity and Olaparib induced synthetic lethality. Low RPA linked to aggressive DCIS, aggressive IBC, and shorter survival outcomes. At the transcriptomic level, low RPA tumours overexpress pseudogene/lncRNA as well as genes involved in chemical carcinogenesis, and drug metabolism. Low RPA remains linked with poor outcome. RPA deficient cells are sensitive to cisplatin and Olaparib induced synthetic lethality. We conclude that RPA directed precision oncology strategy is feasible in breast cancers

    Superresolution imaging of the cytoplasmic phosphatase PTPN22 links integrin-mediated T cell adhesion with autoimmunity

    Get PDF
    Integrins are heterodimeric transmembrane proteins that play a fundamental role in the migration of leukocytes to sites of infection or injury. We found that protein tyrosine phosphatase nonreceptor type 22 (PTPN22) inhibits signaling by the integrin lymphocyte function-associated antigen-1 (LFA-1) in effector T cells. PTPN22 colocalized with its substrates at the leading edge of cells migrating on surfaces coated with the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). Knockout or knockdown of PTPN22 or expression of the autoimmune disease-associated PTPN22-R620W variant resulted in the enhanced phosphorylation of signaling molecules downstream of integrins. Superresolution imaging revealed that PTPN22-R620 (wild-type PTPN22) was present as large clusters in unstimulated T cells and that these disaggregated upon stimulation of LFA-1, enabling increased association of PTPN22 with its binding partners at the leading edge. The failure of PTPN22-R620W molecules to be retained at the leading edge led to increased LFA-1 clustering and integrin-mediated cell adhesion. Our data define a previously uncharacterized mechanism for fine-tuning integrin signaling in T cells, as well as a paradigm of auto-immunity in humans in which disease susceptibility is underpinned by inherited phosphatase mutations that perturb integrin function. 201
    corecore