1,377 research outputs found

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    Bose-Einstein condensation in arbitrarily shaped cavities

    Full text link
    We discuss the phenomenon of Bose-Einstein condensation of an ideal non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities, especially on the critical temperature of the system, is considered. We use two main methods which are shown to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review

    A zeta function approach to the relation between the numbers of symmetry planes and axes of a polytope

    Full text link
    A derivation of the Ces\`aro-Fedorov relation from the Selberg trace formula on an orbifolded 2-sphere is elaborated and extended to higher dimensions using the known heat-kernel coefficients for manifolds with piecewise-linear boundaries. Several results are obtained that relate the coefficients, bib_i, in the Shephard-Todd polynomial to the geometry of the fundamental domain. For the 3-sphere we show that b4b_4 is given by the ratio of the volume of the fundamental tetrahedron to its Schl\"afli reciprocal.Comment: Plain TeX, 26 pages (eqn. (86) corrected

    Casimir effect due to a single boundary as a manifestation of the Weyl problem

    Full text link
    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary we explore the relationship between such approaches, with the goal of better understanding the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978) and Deutsch and Candelas (1979), that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having geometrical origin, and an "intrinsic" term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff, and a non-geometrical intrinsic term. As by-products we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references added, version to be published in J. Phys.

    Patchy Progress On Obesity Prevention: Emerging Exemplars, Entrenched Barriers, and New Thinking

    Full text link
    Although there have been positive pockets of change, no country has yet turned around its obesity epidemic. Preventing an increase in obesity prevalence will require urgent actions from government as well as a broader spectrum of stakeholders than previously emphasized. In this paper, we review a number of regulatory and non-regulatory actions taken around the world to address obesity and discuss some of the reasons for the patchy progress. In addition, we preview the papers in this Lancet series, which each identify priority actions on key obesity issues and challenge some of the entrenched dichotomies that present obesity and its solutions in “either/or” terms. Although obesity is acknowledged as a complex issue, many debates about its causes and solutions are centered around overly simple dichotomies that present seemingly competing perspectives. Examples of such dichotomies explored in this series include: individual versus environmental causes of obesity, personal versus collective responsibilities for actions, supply versus demand explanations for consumption of unhealthy food, government regulation versus industry self-regulation, top down versus bottom up drivers for change, treatment versus prevention priorities, and under versus over nutrition focus. In the current paper, we explore the dichotomy of individual versus environmental drivers of obesity, which lay out two truths: people bear some personal responsibility for their health and environmental factors can readily support or undermine the ability of people to act in their self-interest. We propose a re-framing of obesity that emphasizes the reciprocal nature of the interaction between the environment and individual. Current food environments exploit people’s biological, psychological, social, and economic vulnerabilities, making it easier for them to eat unhealthful foods. This leads to preferences and demands for foods of poor nutritional quality, thus sustaining the unhealthful food environments. Breaking these vicious cycles will need regulatory actions from governments and greater efforts from industry and civil society

    On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    Full text link
    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.Comment: 22 pages, 15 figure

    Avelumab in patients with previously treated metastatic Merkel cell carcinoma (JAVELIN Merkel 200): updated overall survival data after >5 years of follow-up

    Get PDF
    Background: Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer that has a poor prognosis in patients with advanced disease. Avelumab [anti-programmed death-ligand 1 (PD-L1)] became the first approved treatment for patients with metastatic MCC (mMCC), based on efficacy and safety data observed in the JAVELIN Merkel 200 trial. We report long-term overall survival (OS) data after >5 years of follow-up from the cohort of patients with mMCC whose disease had progressed after one or more prior lines of chemotherapy. Patients and methods: In Part A of the single-arm, open-label, phase II JAVELIN Merkel 200 trial, patients with mMCC that had progressed following one or more prior lines of chemotherapy received avelumab 10 mg/kg by intravenous infusion every 2 weeks until confirmed disease progression, unacceptable toxicity, or withdrawal. In this analysis, long-term OS was analyzed. Results: In total, 88 patients were treated with avelumab. At data cut-off (25 September 2020), median follow-up was 65.1 months (range 60.8-74.1 months). One patient (1.1%) remained on treatment, and an additional patient (1.1%) had reinitiated avelumab after previously discontinuing treatment. Median OS was 12.6 months [95% confidence interval (CI) 7.5-17.1 months], with a 5-year OS rate of 26% (95% CI 17% to 36%). In patients with PD-L1+ versus PD-L1- tumors, median OS was 12.9 months (95% CI 8.7-29.6 months) versus 7.3 months (95% CI 3.4-14.0 months), and the 5-year OS rate was 28% (95% CI 17% to 40%) versus 19% (95% CI 5% to 40%), respectively (HR 0.67; 95% CI 0.36-1.25). Conclusion: Avelumab monotherapy resulted in meaningful long-term OS in patients with mMCC whose disease had progressed following chemotherapy. These results further support the role of avelumab as a standard of care for patients with mMCC

    "What Do They Want Me To Say?" The hidden curriculum at work in the medical school selection process: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been little study of the role of the essay question in selection for medical school. The purpose of this study was to obtain a better understanding of how applicants approached the essay questions used in selection at our medical school in 2007.</p> <p>Methods</p> <p>The authors conducted a qualitative analysis of 210 essays written as part of the medical school admissions process, and developed a conceptual framework to describe the relationships, ideas and concepts observed in the data.</p> <p>Results</p> <p>Findings of this analysis were confirmed in interviews with applicants and assessors. Analysis revealed a tension between "genuine" and "expected" responses that we believe applicants experience when choosing how to answer questions in the admissions process. A theory named "What do they want me to say?" was developed to describe the ways in which applicants modulate their responses to conform to their expectations of the selection process; the elements of this theory were confirmed in interviews with applicants and assessors.</p> <p>Conclusions</p> <p>This work suggests the existence of a "hidden curriculum of admissions" and demonstrates that the process of selection has a strong influence on applicant response. This paper suggests ways that selection might be modified to address this effect. Studies such as this can help us to appreciate the unintended consequences of admissions processes and can identify ways to make the selection process more consistent, transparent and fair.</p

    Exploring the tensions of being and becoming a medical educator

    Get PDF
    BackgroundPrevious studies have identified tensions medical faculty encounter in their roles but not specifically those with a qualification in medical education. It is likely that those with postgraduate qualifications may face additional tensions (i.e., internal or external conflicts or concerns) from differentiation by others, greater responsibilities and translational work against the status quo. This study explores the complex and multi-faceted tensions of educators with qualifications in medical education at various stages in their career.MethodsThe data described were collected in 2013&ndash;14 as part of a larger, three-phase mixed-methods research study employing a constructivist grounded theory analytic approach to understand identity formation among medical educators. The over-arching theoretical framework for the study was Communities of Practice. Thirty-six educators who had undertaken or were undertaking a postgraduate qualification in medical education took part in semi-structured interviews.ResultsParticipants expressed multiple tensions associated with both becoming and being a healthcare educator. Educational roles had to be juggled with clinical work, challenging their work-life balance. Medical education was regarded as having lower prestige, and therefore pay, than other healthcare career tracks. Medical education is a vast speciality, making it difficult as a generalist to keep up-to-date in all its areas. Interestingly, the graduates with extensive experience in education reported no fears, rather asserting that the qualification gave them job variety.ConclusionThis is the first detailed study exploring the tensions of educators with postgraduate qualifications in medical education. It complements and extends the findings of the previous studies by identifying tensions common as well as specific to active students and graduates. These tensions may lead to detachment, cynicism and a weak sense of identity among healthcare educators. Postgraduate programmes in medical education can help their students identify these tensions in becoming and develop coping strategies. Separate career routes, specific job descriptions and academic workload models for medical educators are recommended to further the professionalisation of medical education
    • …
    corecore