10,570 research outputs found

    Bound States for Magic State Distillation in Fault-Tolerant Quantum Computation

    Get PDF
    Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure non-stabilizer states which can be distilled from certain mixed non-stabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, non-distillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.Comment: Published version. This paper builds on a theorem proven in "On the Structure of Protocols for Magic State Distillation", arXiv:0908.0838. These two papers jointly form the content of a talk entitled "Neither Magical nor Classical?", which was presented at TQC 2009, Waterlo

    How good must single photon sources and detectors be for efficient linear optical quantum computation?

    Get PDF
    We present a scheme for linear optical quantum computation (LOQC) which is highly robust to imperfect single photon sources and inefficient detectors. In particular we show that if the product of the detector efficiency with the source efficiency is greater than 2/3, then efficient LOQC is possible. This threshold is many orders of magnitude more relaxed than those which could be inferred by application of standard results in fault tolerance. The result is achieved within the cluster state paradigm for quantum computation.Comment: New version contains an Added Appendi

    Loss tolerant linear optical quantum memory by measurement-based quantum computing

    Get PDF
    We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times

    Communications satellite systems capacity analysis

    Get PDF
    Analog and digital modulation techniques are compared with regard to efficient use of the geostationary orbit by communications satellites. Included is the definition of the baseline systems (both space and ground segments), determination of interference susceptibility, calculation of orbit spacing, and evaluation of relative costs. It is assumed that voice or TV is communicated at 14/11 GHz using either FM or QPSK modulation. Both the Fixed-Satellite Service and the Broadcasting-Satellite Service are considered. For most of the cases examined the digital approach requires a satellite spacing less than or equal to that required by the analog approach

    Technology transfer - A selected bibliography

    Get PDF
    Selected bibliography on technology transfe

    The Serendiptichord: Reflections on the collaborative design process between artist and researcher

    Get PDF
    The Serendiptichord is a wearable instrument, resulting from a collaboration crossing fashion, technology, music and dance. This paper reflects on the collaborative process and how defining both creative and research roles for each party led to a successful creative partnership built on mutual respect and open communication. After a brief snapshot of the instrument in performance, the instrument is considered within the context of dance-driven interactive music systems followed by a discussion on the nature of the collaboration and its impact upon the design process and final piece

    Impulse Generation by an Open Shock Tube

    Get PDF
    We perform experimental and numerical studies of a shock tube with an open end. The purpose is to investigate the impulse due to the exhaust of gases through the open end of the tube as a model for a partially filled detonation tube as used in pulse detonation engine testing. We study the effects of the pressure ratio (varied from 3 to 9.2) and the volume ratio (expressed as fill fractions) between the driver and driven section. Two different driver gases, helium and nitrogen, and fill fractions between 5 and 100% are studied; the driven section is filled with air. For both driver gases, increasing the pressure ratio leads to larger specific impulses. The specific impulse increases for a decreasing fill fraction for the helium driver, but the impulse is almost independent of the fill fraction for the nitrogen driver. Two-dimensional (axisymmetric) numerical simulations are carried out for both driver gases. The simulation results show reasonable agreement with experimental measurements at high pressure ratios or small fill fractions, but there are substantial discrepancies for the smallest pressure ratios studied. Empirical models for the impulse in the limits of large and small fill fractions are also compared with the data. Reasonable agreement is found for the trends with fill fractions using the Gurney or Sato model at large fill fractions, but only Cooper’s bubble model is able to predict the small fill fraction limit. Computations of acoustic impedance and numerical simulations of unsteady gas dynamics indicate that the interaction of waves with the driver-driven gas interface and the propagation of waves in the driven gas play an essential role in the partial-fill effect

    Secondary Users of Aerospace Biomedical Technology

    Get PDF
    An urban freeway is treated as a dynamic process. A state model for the freeway is obtained with sectional traffic densities as states and entrance flow rates as controls. A linear programming problem is solved to obtain the optimal freeway densities and entrance flow rates under steady-state conditions, and a state regulator is used to minimize the deviations in traffic densities from these optimal steady-state values
    corecore