161,554 research outputs found

    Detection of methane on Kuiper Belt Object (50000) Quaoar

    Get PDF
    The near-infrared spectrum of (50000) Quaoar obtained at the Keck Observatory shows distinct absorption features of crystalline water ice, solid methane and ethane, and possibly other higher order hydrocarbons. Quaoar is only the fifth Kuiper belt object on which volatile ices have been detected. The small amount of methane on an otherwise water ice dominated surface suggests that Quaoar is a transition object between the dominant volatile-poor small Kuiper belt objects (KBOs) and the few volatile-rich large KBOs such as Pluto and Eris.Comment: 8 pages, 2 figures, accepted for publication in ApJ

    The local extragalactic velocity field, the local mean mass density, and biased galaxy formation

    Get PDF
    The biased galaxy formation picture accounts for the low apparent mass density derived from clustering dynamics by the assumption that the mass per galaxy is unusually low in the regions of high density where clustering has been studied. It would follow that the mass per galaxy is unusually high where the mass density is low, and, by continuity, that the mass per galaxy is close to the global mean in regions where the ambient mass density, p_t, is close to the global mean, P_b. That is, we would expect that the best chance for an unbiased estimate of the mean mass per galaxy, and hence of P_b, would be from the dynamics of regions with p_t ≈ P_b. The local density at redshifts 200 ≾ cz ≾ 400 km s^(-l) must be close to P_b because, as Sandage has emphasized, the local Hubble flow is so little perturbed. In this paper we derive a relationship between the local mass density and the perturbation of the local Hubble flow. The local mass density is estimated by the method used in the Virgocentric flow. We use the infrared Tully-Fisher distances of Aaronson et al. to find limits on the gravitational perturbation to the local Hubble flow, and we use bright galaxy counts, N, to estimate the local galaxy concentration. The statistics on the latter are weak because N is small. We can conclude, however, that if mass were proportional to N, with no fluctuations, and the local mass per galaxy were a fair sample, then the density parameter (Ω = P_b/Einstein-de Sitter density) would be Ω ≈ 0.1, consistent with the other dynamical estimates and inconsistent with the above naive interpretation of biasing

    Near-infrared (NIR) spectra of Centaurs and Kuiper belt objects

    Get PDF
    We present here an extensive survey of near-infrared (NIR) spectra of Kuiper belt objects (KBOs) and Centaurs taken with the Keck I Telescope. We find that most spectra in our sample are well characterized by a combination of water ice and a featureless continuum. A comparative analysis reveals that the NIR spectral properties have little correlation to the visible colors or albedo, with the exception of the fragment KBOs produced from the giant impact on 2003 EL61. The results suggest that the surface composition of KBOs is heterogeneous, though the exposure of water ice may be controlled by geophysical processes. The Centaurs also display diverse spectral properties, but the source of the variability remains unclear. The results for both the KBOs and the Centaurs point to inherent heterogeneity in either the processes acting on these objects or materials from which they formed

    Detection of Additional Members of the 2003 EL61 Family via Infrared Spectroscopy

    Get PDF
    We have acquired near-infrared spectra of Kuiper belt objects 2003 UZ117, 2005 CB79 and 2004 SB60 with NIRC on the Keck I Telescope. These objects are dynamically close to the core of the 2003 EL61 collisional family and were suggested to be potential fragments of this collision by Ragozzine and Brown (2007). We find that the spectra of 2003 UZ117 and 2005 CB79 both show the characteristic strong water ice absorption features seen exclusively on 2003 EL61, its largest satellite, and the six other known collisional fragments. In contrast, we find that the near infrared spectrum of 2004 SB60 is essentially featureless with a fraction of water ice of less than 5%. We discuss the implications of the discovery of these additional family members for understanding the formation and evolution of this collisional family in the outer solar system.Comment: 9 Pages, 2 figure

    Tentative Detection of the Rotation of Eris

    Get PDF
    We report a multi-week sequence of B-band photometric measurements of the dwarf planet Eris using the {\it Swift} satellite. The use of an observatory in low-Earth orbit provides better temporal sampling than is available with a ground-based telescope. We find no compelling evidence for an unusually slow rotation period of multiple days, as has been suggested previously. A ∼\sim1.08 day rotation period is marginally detected at a modest level of statistical confidence (∼\sim97%). Analysis of the combination of the SwiftSwift data with the ground-based B-band measurements of \citet{2007AJ....133...26R} returns the same period (∼\sim1.08 day) at a slightly higher statistical confidence (∼\sim99%).Comment: Accepted to Icarus 2008-Aug-19. 19 pages total, including 4 figures and 1 tabl

    Water ice in the Kuiper belt

    Get PDF
    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice—perhaps mixed with ammonia—that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as "neutral" and "red"), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the ~20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture

    NICMOS Photometry of the Unusual Dwarf Planet Haumea and its Satellites

    Get PDF
    We present here Hubble Space Telescope NICMOS F110W and F160W observations of Haumea, and its two satellites Hi'iaka and Namaka. From the measured (F110W-F160W) colors of –1.208 ± 0.004, –1.48 ± 0.06, and –1.4 ± 0.2 mag for each object, respectively, we infer that the 1.6 μm water-ice absorption feature depths on Hi'iaka and Namaka are at least as deep as that of Haumea. The light curve of Haumea is detected in both filters, and we find that the infrared color is bluer by ~2%-3% at the phase of the red spot. These observations suggest that the satellites of Haumea were formed from the collision that produced the Haumea collisional family

    Comparison of Models of Critical Opacity in the Quark-Gluon Plasma

    Full text link
    In this work we discuss two methods of calculation of quark propagation in the quark-gluon plasma. Both methods make use of the Nambu-Jona-Lasinio model. The essential difference of these calculations is the treatment of deconfinement. A model of confinement is not included in the work of Gastineau, Blanquier and Aichelin [hep-ph/0404207], however, the meson states they consider are still bound for temperatures greater than the deconfinement temperature T_c. On the other hand, our model deals with unconfined quarks and includes a description of the q(bar)q resonances found in lattice QCD studies that make use of the maximum entropy method (MEM). We compare the q{bar)q cross sections calculated in these models.Comment: 7 pages and 4 figures RevTe

    NASA-ARC 91.5-cm airborne infrared telescope

    Get PDF
    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented
    • …
    corecore