2,793 research outputs found
Keynote Speaker Presentations: 5th Annual UMass Center for Clinical and Translational Research Retreat (video)
This video features the full keynote presentations from the 5th Annual UMass Center for Clinical and Translational Science Research Retreat at the University of Massachusetts Medical School (UMMS) in Worcester, MA, on May 20, 2014.
Beginning at 12:40
1st Keynote Speaker: Robert H. Brown, Jr., MD, D.Phil, Chair, Department of Neurology, UMMS. “Lou Gehrig Disease: From Mapping to Medicines”
Beginning at 1:22:19
2nd Keynote Speaker: Thomas Grisso, PhD, Director, Law and Psychiatry Program and Professor, Department of Psychiatry, UMMS. Recipient, Chancellor’s Medal for Distinguished Scholarship. “Translational Research in Law and Psychiatry”
Also included is a brief introductory presentation with updates about the UMass Center for Clinical and Translational Science by Katherine Luzuriaga, MD, Director, UMCCTS
Serum Ferritin and Metal Levels as Risk Factors for Amyotrophic Lateral Sclerosis
Metal toxicity has been identified as a possible risk factor for amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. We conducted a retrospective chart review of urinary, hair and blood metal levels and serum ferritin in 321 people with ALS seen over a ten-year period at the Massachusetts General Hospital (MGH). We found that hair lead levels and serum ferritin levels were elevated in ALS patients compared to published normal values. Metal levels of arsenic, lead, mercury, cadmium, thallium, cobalt and aluminum in 24-hour urine specimens and lead, mercury and arsenic in serum were within the normal range. We conclude that twenty-four hour urine or blood testing for metals is not warranted as part of the evaluation of ALS. Elevated levels of serum ferritin in ALS population could reflect an underlying perturbation in iron metabolism
Recommended from our members
Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides
MicroRNAs (miRNAs) function cell-intrinsically to regulate gene expression by base-pairing to complementary mRNA targets while in association with Argonaute, the effector protein of the miRNA-mediated silencing complex (miRISC). A relatively dilute population of miRNAs can be found extracellularly in body fluids such as human blood plasma and cerebrospinal fluid (CSF). The remarkable stability of circulating miRNAs in such harsh extracellular environments can be attributed to their association with protective macromolecular complexes, including extracellular vesicles (EVs), proteins such as Argonaut 2 (AGO2), or high-density lipoproteins. The precise origins and the potential biological significance of various forms of miRNA-containing extracellular complexes are poorly understood. It is also not known whether extracellular miRNAs in their native state may retain the capacity for miRISC-mediated target RNA binding. To explore the potential functionality of circulating extracellular miRNAs, we comprehensively investigated the association between circulating miRNAs and the miRISC Argonaute AGO2. Using AGO2 immunoprecipitation (IP) followed by small-RNA sequencing, we find that miRNAs in circulation are primarily associated with antibody-accessible miRISC/AGO2 complexes. Moreover, we show that circulating miRNAs can base-pair with a target mimic in a seed-based manner, and that the target-bound AGO2 can be recovered from blood plasma in an approximately 1:1 ratio with the respective miRNA. Our findings suggest that miRNAs in circulation are largely contained in functional miRISC/AGO2 complexes under normal physiological conditions. However, we find that, in human CSF, the assortment of certain extracellular miRNAs into free miRISC/AGO2 complexes can be affected by pathological conditions such as amyotrophic lateral sclerosis
Recommended from our members
Corticospinal Motor Neurons and Related Subcerebral Projection Neurons Undergo Early and Specific Neurodegeneration in Transgenic ALS Mice
Amyotrophic lateral sclerosis (ALS) is characterized by predominant vulnerability and central degeneration of both corticospinal/corticobulbar motor neurons (CSMN; “upper motor neurons”) in cerebral cortex, and spinal/bulbar motor neurons (SMN; “lower motor neurons”) in spinal cord and brainstem. Increasing evidence indicates broader cerebral cortex pathology in cognitive, sensory, and association systems in select cases. It remains unclear whether widely accepted transgenic ALS models, in particular mice, undergo degeneration of CSMN and molecularly/developmentally closely related populations of nonmotor projection neurons [e.g., other subcerebral projection neurons (SCPN)], and whether potential CSMN/SCPN degeneration is specific and early. This relative lack of knowledge regarding upper motor neuron pathology in these ALS model mice has hindered both molecular-pathophysiologic understanding of ALS and their use toward potential CSMN therapeutic approaches. Here, using a combination of anatomic, cellular, transgenic labeling, and newly available neuronal subtype-specific molecular analyses, we identify that CSMN and related nonmotor SCPN specifically and progressively degenerate in mice. Degeneration starts quite early and presymptomatically, by postnatal day 30. Other neocortical layers, cortical interneurons, and other projection neuron populations, even within layer V, are not similarly affected. Nonneuronal pathology in neocortex (activated astroglia and microglia) is consistent with findings in human ALS cortex and in affected mouse and human spinal cord. These results indicate previously unknown neuron type-specific vulnerability of CSMN/sensory and association SCPN, and identify that characteristic dual CSMN and SMN degeneration is conserved in mice. These results provide a foundation for detailed investigation of CSMN/SCPN vulnerability and toward potential CSMN therapeutics in ALS.Stem Cell and Regenerative Biolog
Genetic determinants of cerebral edema in severe traumatic brain injury: A pilot study of the role of CACNA1 and AQP4 gene mutations
Cerebral edema is the one of the most significant predictors of poor outcome after traumatic brain injury. It is still unclear what the pathophysiological and cellular mechanisms and predictors of post-traumatic edema are. The exponential growth in genetic information has opened an avenue for investigation in traumatic brain injury and implicated specific genes in the pathophysiology of post-traumatic injury edema. Two examples are the Aquaporin-4 and CACNA1 genes, which respectively encode water and calcium channels. The Aquaporin-4 gene on chromosome 18q11.2-12.1 encodes the Aquaporin-4 protein (AQP4) water channel. AQP4 is one of the bidirectional high capacity water channels that is primarily expressed in astrocytic foot processes in the central nervous system at the blood-brain barrier and is thought to be critical for brain water homeostasis. Experimental studies showed that AQP4 deficient mice had significantly reduced cerebral edema and better survival in a water intoxication model. The CACNA1 gene on chromosome 19p13 encodes the a1A subunit of a neuronal calcium channel. Patients with Familial Hemiplegic Migraine and delayed fatal cerebral edema and seizuresfrom minor trauma have been found to have mutations in CACNA1, which are hypothesized to enhance development of cytotoxic edema. A missense mutation is reported to enhance risk of delayed fatal cerebral edema.
Hypothesis: The CACNA1 gene missense mutation S218L and AQP4 polymorphisms will be over-represented in patients with post-traumatic cerebral edema. Our Specific Aim is to perform full exon sequence analysis of these two genes in 20 well-defined cases of excessive cerebral edema. Our long term goal is to systematically investigate genetic variants as determinants of risk of excessive cerebral edema. It is hoped that this will further elucidate secondary mechanisms of injury specifically in the formation of post-traumatic edema and lead to targeted therapies in the future
Immediate and long-term consequences of COVID-19 infections for the development of neurological disease
Increasing evidence suggests that infection with Sars-CoV-2 causes neurological deficits in a substantial proportion of affected patients. While these symptoms arise acutely during the course of infection, less is known about the possible long-term consequences for the brain. Severely affected COVID-19 cases experience high levels of proinflammatory cytokines and acute respiratory dysfunction and often require assisted ventilation. All these factors have been suggested to cause cognitive decline. Pathogenetically, this may result from direct negative effects of the immune reaction, acceleration or aggravation of pre-existing cognitive deficits, or de novo induction of a neurodegenerative disease. This article summarizes the current understanding of neurological symptoms of COVID-19 and hypothesizes that affected patients may be at higher risk of developing cognitive decline after overcoming the primary COVID-19 infection. A structured prospective evaluation should analyze the likelihood, time course, and severity of cognitive impairment following the COVID-19 pandemic
CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase complex (SCF(Cyclin F)). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCF(Cyclin F) substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration
ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function
Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants. We characterized a subset of these: p.G217R, p.R357X, and p.C471Y. Here, we show that the p.R357X and p.G217R both abolish the ability of TBK1 to phosphorylate 2 of its kinase targets, IRF3 and optineurin, and to undergo phosphorylation. They both inhibit binding to optineurin and the p.G217R, within the TBK1 kinase domain, reduces homodimerization, essential for TBK1 activation and function. Finally, we show that the proportion of TBK1 that is active (phosphorylated) is reduced in 5 lymphoblastoid cell lines derived from patients harboring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal targets, implicating a common loss of function mechanism, analogous to truncation mutations
BET bromodomain inhibitors PFI-1 and JQ1 are identified in an epigenetic compound screen to enhance C9ORF72 gene expression and shown to ameliorate C9ORF72-associated pathological and behavioral abnormalities in a C9ALS/FTD model
BACKGROUND: An intronic GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), referred to as C9ALS/FTD. No cure or effective treatment exist for C9ALS/FTD. Three major molecular mechanisms have emerged to explain C9ALS/FTD disease mechanisms: (1) C9ORF72 loss-of-function through haploinsufficiency, (2) dipeptide repeat (DPR) proteins mediated toxicity by the translation of the repeat RNAs, and more controversial, (3) RNA-mediated toxicity by bidirectional transcription of the repeats that form intranuclear RNA foci. Recent studies indicate a double-hit pathogenic mechanism in C9ALS/FTD, where reduced C9ORF72 protein levels lead to impaired clearance of toxic DPRs. Here we explored whether pharmacological compounds can revert these pathological hallmarks in vitro and cognitive impairment in a C9ALS/FTD mouse model (C9BAC). We specifically focused our study on small molecule inhibitors targeting chromatin-regulating proteins (epidrugs) with the goal of increasing C9ORF72 gene expression and reduce toxic DPRs.
RESULTS: We generated luciferase reporter cell lines containing 10 (control) or \u3e /= 90 (mutant) G4C2 HRE located between exon 1a and 1b of the human C9ORF72 gene. In a screen of 14 different epidrugs targeting bromodomains, chromodomains and histone-modifying enzymes, we found that several bromodomain and extra-terminal domain (BET) inhibitors (BETi), including PFI-1 and JQ1, increased luciferase reporter activity. Using primary cortical cultures from C9BAC mice, we further found that PFI-1 treatment increased the expression of V1-V3 transcripts of the human mutant C9ORF72 gene, reduced poly(GP)-DPR inclusions but enhanced intranuclear RNA foci. We also tested whether JQ1, an BETi previously shown to reach the mouse brain by intraperitoneal (i.p.) injection, can revert behavioral abnormalities in C9BAC mice. Interestingly, it was found that JQ1 administration (daily i.p. administration for 7 days) rescued hippocampal-dependent cognitive deficits in C9BAC mice.
CONCLUSIONS: Our findings place BET bromodomain inhibitors as a potential therapy for C9ALS/FTD by ameliorating C9ORF72-associated pathological and behavioral abnormalities. Our finding that PFI-1 increases accumulation of intranuclear RNA foci is in agreement with recent data in flies suggesting that nuclear RNA foci can be neuroprotective by sequestering repeat transcripts that result in toxic DPRs
Intralingual and Intrapleural AAV Gene Therapy Prolongs Survival in a SOD1 ALS Mouse Model
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results in death from respiratory failure. No cure exists for this devastating disease, but therapy that directly targets the respiratory system has the potential to prolong survival and improve quality of life in some cases of ALS. The objective of this study was to enhance breathing and prolong survival by suppressing superoxide dismutase 1 (SOD1) expression in respiratory motor neurons using adeno-associated virus (AAV) expressing an artificial microRNA targeting the SOD1 gene. AAV-miR(SOD1) was injected in the tongue and intrapleural space of SOD1(G93A) mice, and repetitive respiratory and behavioral measurements were performed until the end stage. Robust silencing of SOD1 was observed in the diaphragm and tongue as well as systemically. Silencing of SOD1 prolonged survival by approximately 50 days, and it delayed weight loss and limb weakness in treated animals compared to untreated controls. Histologically, there was preservation of the neuromuscular junctions in the diaphragm as well as the number of axons in the phrenic and hypoglossal nerves. Although SOD1 suppression improved breathing and prolonged survival, it did not ameliorate the restrictive lung phenotype. Suppression of SOD1 expression in motor neurons that underlie respiratory function prolongs survival and enhances breathing until the end stage in SOD1(G93A) ALS mice
- …