823 research outputs found

    Evolution of Fluctuation in relativistic heavy-ion collisions

    Get PDF
    We have studied the time evolution of the fluctuations in the net baryon number for different initial conditions and space time evolution scenarios. We observe that the fluctuations at the freeze-out depend crucially on the equation of state (EOS) of the system and for realistic EOS the initial fluctuation is substantially dissipated at the freeze-out stage. At SPS energies the fluctuations in net baryon number at the freeze-out stage for quark gluon plasma and hadronic initial state is close to the Poissonian noise for ideal as well as for EOS obtained by including heavier hadronic degrees of freedom. For EOS obtained from the parametrization of lattice QCD results the fluctuation is larger than Poissonian noise. It is also observed that at RHIC energies the fluctuations at the freeze-out point deviates from the Poissonian noise for ideal as well as realistic equation of state, indicating presence of dynamical fluctuations.Comment: 9 pages and 6 figures (Major modifications done

    Floristic analysis of the Mountain Zebra National Park, Eastern Cape

    Get PDF
    As part of a larger project to assess the vegetation dynamics and conservation potential of the enlarged Mountain Zebra National Park, a checklist was produced to determine the plant species richness for this area. Six hundred and eighty species, represented by 333 genera and 87 families were identified. One hundred and eighty species belong to the Monocotyledoneae and 479 species to the Dicotyledoneae. By far the largest families are the Asteraceae with 129 and the Poaceae with 82 species. Thirteen Red Data species were recorded. A number of fynbos elements were encountered, the most noteworthy being two families endemic to the Cape Floristic Region, the Penaeaceae and Grubbiaceae. A very high species to square kilometre ratio of 5.05 supports the area’s rich floristic composition

    Strangeness production time and the K+/pi+ horn

    Get PDF
    We construct a hadronic kinetic model which describes production of strange particles in ultrarelativistic nuclear collisions in the energy domain of SPS. We test this model on description of the sharp peak in the excitation function of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces these data rather well. The model thus must be tested on other types of data in order to verify the hypothesis that deconfinement sets in at lowest SPS energies.Comment: proceedings of Hot Quarks 0

    System-size dependence of the pion freeze-out volume as a potential signature for the phase transition to a Quark Gluon Plasma

    Full text link
    Hanburry-Brown-Twiss (HBT) correlation functions and radii of negatively charged pions from C+C, Si+Si, Cu+Cu, and In+In at lower RHIC/SPS energies are calculated with the UrQMD transport model and the CRAB analyzing program. We find a minimum in the excitation function of the pion freeze-out volume at low transverse momenta and around Elab2030AE_{lab}\sim 20-30AGeV which can be related to the transition from hadronic to string matter (which might be interpreted as a pre-cursor of the QGP). The existence of the minimum is explained by the competition of two mechanisms of the particle production, resonance decays and string formation/fragmentation.Comment: 12 pages, 4 fig

    Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve

    Get PDF
    {\em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant to the Earth's core. The {\em ab initio} free energy is obtained by using thermodynamic integration to calculate the change of free energy on going from a simple reference system to the {\em ab initio} system, with thermal averages computed by {\em ab initio} molecular dynamics simulation. The reference system consists of the inverse-power pair-potential model used in previous work. The liquid-state free energy is combined with the free energy of hexagonal close packed Fe calculated earlier using identical {\em ab initio} techniques to obtain the melting curve and volume and entropy of melting. Comparisons of the calculated melting properties with experimental measurement and with other recent {\em ab initio} predictions are presented. Experiment-theory comparisons are also presented for the pressures at which the solid and liquid Hugoniot curves cross the melting line, and the sound speed and Gr\"{u}neisen parameter along the Hugoniot. Additional comparisons are made with a commonly used equation of state for high-pressure/high-temperature Fe based on experimental data.Comment: 16 pages including 6 figures and 5 table

    Multifractal Analysis of inhomogeneous Bernoulli products

    Full text link
    We are interested to the multifractal analysis of inhomogeneous Bernoulli products which are also known as coin tossing measures. We give conditions ensuring the validity of the multifractal formalism for such measures. On another hand, we show that these measures can have a dense set of phase transitions

    The phase diagram of quantum systems: Heisenberg antiferromagnets

    Full text link
    A novel approach for studying phase transitions in systems with quantum degrees of freedom is discussed. Starting from the microscopic hamiltonian of a quantum model, we first derive a set of exact differential equations for the free energy and the correlation functions describing the effects of fluctuations on the thermodynamics of the system. These equations reproduce the full renormalization group structure in the neighborhood of a critical point keeping, at the same time, full information on the non universal properties of the model. As a concrete application we investigate the phase diagram of a Heisenberg antiferromagnet in a staggered external magnetic field. At long wavelengths the known relationship to the Quantum Non Linear Sigma Model naturally emerges from our approach. By representing the two point function in an approximate analytical form, we obtain a closed partial differential equation which is then solved numerically. The results in three dimensions are in good agreement with available Quantum Monte Carlo simulations and series expansions. More refined approximations to the general framework presented here and few applications to other models are briefly discussed.Comment: 17 pages, 7 figure

    Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre

    Get PDF
    In addition to reducing carbon dioxide (CO2) emissions, actively removing CO2 from the atmosphere is widely considered necessary to keep global warming well below 2°C. Ocean Alkalinity Enhancement (OAE) describes a suite of such CO2 removal processes that all involve enhancing the buffering capacity of seawater. In theory, OAE both stores carbon and offsets ocean acidification. In practice, the response of the marine biogeochemical system to OAE must be demonstrably negligible, or at least manageable, before it can be deployed at scale. We tested the OAE response of two natural seawater mixed layer microbial communities in the North Atlantic Subtropical Gyre, one at the Western gyre boundary, and one in the middle of the gyre. We conducted 4-day microcosm incubation experiments at sea, spiked with three increasing amounts of alkaline sodium salts and a 13C-bicarbonate tracer at constant pCO2. We then measured a suite of dissolved and particulate parameters to constrain the chemical and biological response to these additions. Microbial communities demonstrated occasionally measurable, but mostly negligible, responses to alkalinity enhancement. Neither site showed a significant increase in biologically produced CaCO3, even at extreme alkalinity loadings of +2,000 μmol kg−1. At the gyre boundary, alkalinity enhancement did not significantly impact net primary production rates. In contrast, net primary production in the central gyre decreased by ~30% in response to alkalinity enhancement. The central gyre incubations demonstrated a shift toward smaller particle size classes, suggesting that OAE may impact community composition and/or aggregation/disaggregation processes. In terms of chemical effects, we identify equilibration of seawater pCO2, inorganic CaCO3 precipitation, and immediate effects during mixing of alkaline solutions with seawater, as important considerations for developing experimental OAE methodologies, and for practical OAE deployment. These initial results underscore the importance of performing more studies of OAE in diverse marine environments, and the need to investigate the coupling between OAE, inorganic processes, and microbial community composition

    Wavelets techniques for pointwise anti-Holderian irregularity

    Full text link
    In this paper, we introduce a notion of weak pointwise Holder regularity, starting from the de nition of the pointwise anti-Holder irregularity. Using this concept, a weak spectrum of singularities can be de ned as for the usual pointwise Holder regularity. We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (denoted here strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum di ers from the strong one

    Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei

    Get PDF
    Analytical expressions of the one- and two-body terms in the cluster expansion of the charge form factors and densities of the s-p and s-d shell nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b and the parameter β\beta which originates from the Jastrow correlation function. These expressions are used for the systematic study of the effect of short range correlations on the form factors and densities and of the mass dependence of the parameters b and β\beta. These parameters have been determined by fit to the experimental charge form factors. The inclusion of the correlations reproduces the experimental charge form factors at the high momentum transfers (q21/fmq\geq 2 1/fm). It is found that while the parameter β\beta is almost constant for the closed shell nuclei, 4^4He, 16^{16}O and 40^{40}Ca, its values are larger (less correlated systems) for the open shell nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl
    corecore