166,141 research outputs found

    Resonant Acoustic Determination of Complex Elastic Moduli

    Get PDF
    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc

    Cosmological constraints from Sunyaev-Zeldovich cluster counts: an approach to account for missing redshifts

    Full text link
    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalogue, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.Comment: 6 pages, 5 figures, accepted by Ap

    Fiber-optic push-pull sensor systems

    Get PDF
    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems

    Foreground removal requirements for measuring large-scale CMB B-modes in light of BICEP2

    Full text link
    The most convincing confirmation that the B-mode polarization signal detected at degree scales by BICEP2 is due to the Cosmic Microwave Background (CMB) would be the measurement of its large-scale counterpart. We assess the requirements for diffuse component separation accuracy over large portions of the sky in order to measure the large-scale B-mode signal corresponding to a tensor to scalar ratio of r=0.1-0.2. We use the method proposed by Bonaldi & Ricciardi (2011) to forecast the performances of different simulated experiments taking into account noise and foreground removal issues. We do not consider instrumental systematics, and we implicitly assume that they are not the dominant source of error. If this is the case, the confirmation of an r=0.1-0.2 signal is achievable by Planck even for conservative assumptions regarding the accuracy of foreground cleaning. Our forecasts suggest that the combination of this experiment with BICEP2 will lead to an improvement of 25-45% in the constraint on r. A next-generation CMB polarization satellite, represented in this work by the COrE experiment, can reduce dramatically (by almost another order of magnitude) the uncertainty on r. In this case, however, the accuracy of foreground removal becomes critical to fully benefit from the increase in sensitivity.Comment: 8 pages, 3 figures, 1 table. Accepted by MNRA
    corecore