62,766 research outputs found

    New twisted intermetallic compound superconductor: A concept

    Get PDF
    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices

    Method of fabricating a twisted composite superconductor

    Get PDF
    A method of producing a twisted, stabilized wire or tube superconductor which can be used to wind electromagnets, armatures, rotors, field windings for motors and generators, and other magnetic devices which use a solenoid, toroidal, or other type winding is reported. At least one groove is formed along the length of a wire substrate which is then twisted into a helix and a layer of intermetallic superconducting material is formed in the groove. This layer can be formed by depositing the desired intermetallic compound into the groove or by diffusing one component of the superconductor into the groove formed in a substrate composed of the other component. The superconductor prepared by this method comprises a non-superconductor wire twisted into the shape of a helix, having at least one groove containing a layer of superconductor material along the length of the wire

    Limits on new long range nuclear spin-dependent forces set with a K-3He co-magnetometer

    Full text link
    A magnetometer using spin-polarized K and 3^3He atoms occupying the same volume is used to search for anomalous nuclear spin-dependent forces generated by a separate 3^3He spin source. We measure changes in the 3^3He spin precession frequency with a resolution of 18 pHz and constrain anomalous spin forces between neutrons to be less than 2×1082 \times 10^{-8} of their magnetic or less than 2×1032\times 10^{-3} of their gravitational interactions on a length scale of 50 cm. We present new limits on neutron coupling to light pseudoscalar and vector particles, including torsion, and constraints on recently proposed models involving unparticles and spontaneous breaking of Lorentz symmetry.Comment: 4 pages, 4 figures, latest version as appeared in PR

    Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    Get PDF
    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century

    Forest diagrams for elements of Thompson's group F

    Full text link
    We introduce forest diagrams to represent elements of Thompson's group F. These diagrams relate to a certain action of F on the real line in the same way that tree diagrams relate to the standard action of F on the unit interval. Using forest diagrams, we give a conceptually simple length formula for elements of F with respect to the {x_0,x_1} generating set, and we discuss the construction of minimum-length words for positive elements. Finally, we use forest diagrams and the length formula to examine the structure of the Cayley graph of F.Comment: 44 pages, 70 figure

    The Microcanonical Functional Integral. I. The Gravitational Field

    Full text link
    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν\nu is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by {\it any} real stationary axisymmetric black hole, then in this same approximation lnν\ln\nu is shown to equal 1/4 the area of the black hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν\nu that lead to "imaginary time" functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function.Comment: 29 pages, plain Te
    corecore