2,306 research outputs found

    Optical Constants of Mars Candidate Materials used to Model Laboratory Reflectance Spectra of Mixtures

    Get PDF
    Data obtained at visible and nearinfrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al- OH-bearing phyllosilicates were identified including the smectites nontronite, saponite, and montmorillonite. To constrain the abundances of these phyllosilicates, spectral analyses of mixtures are needed. We report on our effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. Here we focus on two component mixtures of the hydrated/ hydroxylated silicates, saponite and montmorillonite (Mg- and Al-rich smectites) with each other and with two analogs for other Martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass, hereafter referred to as palagonite). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 micron. Here we focus upon mixtures of the 63-90 m size fractions

    Initial Estimates of Optical Constants of Mars Candidate Materials

    Get PDF
    Data obtained at visible and near-infrared wavelengths by OMEGA on Mars Express and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al- OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. To constrain the abundances of these phyllosilicates, spectral analyses of mixtures are needed. We report on our effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/ hydroxylated silicates with each other and with two analogs for other Martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass, hereafter referred to as palagonite). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al-rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 micron

    Ices on the Satellites of Jupiter, Saturn, and Uranus

    Get PDF
    Three satellites of Jupiter, seven satellites of Saturn, and five satellites of Uranus show spectroscopic evidence of H2O ice on their surfaces, although other details of their surfaces are highly diverse. The icy surfaces contain contaminants of unknown composition in varying degrees of concentration, resulting in coloration and large differences in albedo. In addition to H2O, Europa has frozen SO2, and Ganymede has O2 in the surface; in both of these cases external causes are implicated in the deposition or formation of these trace components. Variations in ice exposure across the surfaces of the satellites are measured from the spectroscopic signatures. While H2O ice occurs on the surfaces of many satellites, the range of bulk densities of these bodies shows that its contribution to their overall compositions is highly variable from one object to another

    On-Going Laboratory Efforts to Quantitatively Address Clay Abundance on Mars

    Get PDF
    Data obtained at visible and near-infrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al-OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. In order to constrain the abundances of these phyllosilicates spectral analyses of mixtures are needed. We report on our on-going effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/hydroxylated silicates with each other and with two analogs for other martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al- rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 m. As the second phase of our effort we used scanning electron microscopy imaging and x-ray diffraction to characterize the grain size distribution, and structural nature, respectively, of the mixtures. Visible and near-infrared reflectance spectra of the 63-90 micrometers grain size of the mixture samples are shown in Figure 1. We discuss the results of our measurements of these mixtures

    Prospectus, November 7, 2012

    Get PDF
    FORMER PROFESSOR ENJOYS TABLE TENNIS SUCCESS, Photography a Good Option for Creative Students, Speech Lab Helps Students With Public Speaking Skills, Student Groups Compete in Pumpkin Carving Contest, Election Day 2012, How States Have Voted Since 1988, From ZZZ\u27s to A\u27s: How Sleep Affects Learning, Parkland Advising Issues: Are Students or Advisers to Blame?, Parkland Basketball Teams Begin New Season, Cobra Volleyball Team Head to Nationals, Review of Assassins Creed 3, Console Video Games Face New Competitionhttps://spark.parkland.edu/prospectus_2012/1026/thumbnail.jp

    The reliability of two visual motor integration tests used with children

    Full text link
    Occupational therapists often assess the visual motor integration (VMI) skills of children and young people. It is important that therapists use tools with strong psychometric properties. This study aims to examine the reliability of 2 VMI tests. Ninety-two children between the ages of 5 and 17 years (response rate of 31%) completed 2 VMI tests: the Developmental Test of Visual Motor Integration (DTVMI) and the Full Range Test of Visual Motor Integration (FRTVMI). Cronbach\u27s alpha coefficient was used to examine the internal consistency of the 2 VMI tests whereas Spearman\u27s rho correlation was used to evaluate the test&ndash;retest reliability, intrarater reliability, and interrater reliability of the 2 VMI tests. The Cronbach\u27s alpha coefficient for the DTVMI was .82 and .72 for the FRTVMI. The test&ndash;retest reliability coefficient was .73 (p = .000) for the DTVMI and .49 (p = .05) for the FRTVMI. The interrater correlation was significant for both the DTVMI at .94 (p = .000) and FRTVMI at .68 (p = .001). The DTVMI intrarater reliability correlation result was .90 (p = .000) and the FRTVMI at .85 (p = .000). Overall, the DTVMI exhibited a higher level of reliability than the FRTVMI. Both VMI tests appear to exhibit reasonable levels of reliability and are recommended for use with children and young people.<br /

    The Surfaces of Pluto and Charon

    Get PDF
    Much of the surface of Pluto consists of high-albedo regions covered to an unknown depth by Beta-N2, contaminated with CH4, CO, and other molecules. A portion of the exposed surface appears to consist of solid H2O. The remainder is covered by lower albedo material of unknown composition. The N2 ice may occur as polar caps of large extent, leaving ices and other solids of lower volatility in the equatorial regions. The low-albedo material found primarily in the equatorial regions may consist in part of solid hydrocarbons and nitriles produced from N2 and CH4 in the atmosphere or in the surface ices. Alternatively, it may arise from deposition from impacting bodies and/or the chemistry of the impact process itself. Charon's surface is probably more compositionally uniform than that of Pluto, and is covered by H2O ice with possible contaminants or exposures of other materials that are as yet unidentified. The molecular ices discovered on Pluto and Charon have been identified from near-infrared spectra obtained with Earth-based telescopes. The quantitative interpretation of those data has been achieved through the computation of synthetic spectra using the Hapke scattering theory and the optical constants of various ices observed in the laboratory. Despite limitations imposed by the availability of laboratory data on ices in various mixtures, certain specific results have been obtained. It appears that CH4 and CO are trace constituents, and that some fraction of the CH4 (and probably the CO) on Pluto is dissolved in the matrix of solid N2. Pure CH4 probably also occurs on Pluto's surface, allowing direct access to the atmosphere. Study of the nitrogen absorption band at 2.148 micrometers shows that the temperature of the N2 in the present epoch is 40 +/-2 K. The global temperature regime of Pluto can be modeled from observations of the thermal flux at far-infrared and millimeter wavelengths. The low-albedo equatorial regions must be significantly warmer than the polar regions covered by N2 (at T = 40 K) to account for the total thermal flux measured. At the present season, the diurnal skin depth of the insolation-driven thermal wave is small, and the observed mm-wave fluxes may arise from a greater depth. Alternatively, the mm-wave flux may arise from the cool, sublimation source region. The surface microstructure in the regions covered by N2 ice is likely governed by the sintering properties of this highly volatile material. The observed nitrogen infrared band strength requires that expanses of the surface be covered with cm-sized crystals of N2. Grains of H2O ice on Charon, in contrast, are probably of order 50 micrometers in size, and do not metamorphose into larger grains at a significant rate. Because of the similarities in size, density, atmosphere and surface composition between Pluto and Neptune's satellite Triton, the surface structures observed by Voyager on Triton serve as a plausible paradigm for what might be expected on Pluto. Such crater forms, tectonic structures, aeolian features, cryovolcanic structures, and sublimation-degraded topography as are eventually observed on Pluto and Charon by spacecraft will give information on their interior compositions and structures, as well as on the temperature and wind regimes over the planet's extreme seasonal cycle
    • …
    corecore