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tow>!, INASA Ames Research Center, Moffett Field, CA 94035, (ted.l.roush@nasa.gov), 2SETI Institute, Mountain
View, CA 94043, NASA Post-Doctoral Program, Oak Ridge Assoc. Univ., Oak Ridge, TN 37831.

Introduction: Data obtained at visible and near-
infrared wavelengths by OMEGA on MarsExpress and
CRISM on MRO provide definitive evidence for the
presence of phyllosilicates and other hydrated phases
on Mars. A diverse range of both Fe/Mg-OH and Al-
OH-bearing phyllosilicates were identified including
the smectites nontronite, saponite, and montmorillo-
nite. To constrain the abundances of these phyllosili-
cates, spectral analyses of mixtures are needed.

We report on our effort to enable the quantitative
evaluation of the abundance of hydrated-hydroxylated
silicates when they are contained in mixtures. Here we
focus on two component mixtures of the hydrat-
ed/hydroxylated silicates, saponite and montmorillo-
nite (Mg- and Al-rich smectites) with each other and
with two analogs for other Martian materials; pyroxene
(enstatite) and palagonitic soil (an alteration product of
basaltic glass, hereafter referred to as palagonite). We
prepared three size separates of each end-member for
study: 20-45, 63-90, and 125-150 pm. Here we focus
upon mixtures of the 63-90 um size fractions.

Sample Preparation and Characterization: The
samples were prepared as powders using a series of
sieves. Characterization of each sample included scan-
ning electron microscopy (SEM) to document grain
size, X-ray diffraction (XRD) to document structure,
and reflectance spectroscopy to relate the laboratory
measurements to observational data from Mars [1,2].
The grain size distributions for the 63-90 pum sieve
fractions were determined via SEM image analyses are
shown in Fig. 1.

Reflectance spectra, 0.35-100 pm, of the end-
members and their mixtures were obtained at the
RELAB [3] and data were combined by scaling the
longer wavelength data to agree with the shorter wave-
length range. The shorter wavelength data were ob-
tained with incidence and emission angles of 0° and
30°, respectively. The results for mixtures of the sam-
ples are shown in Fig. 2 over the wavelength range
approximately applicable to CRISM.

Analytical Approach: Retrieval of optical con-
stants used four representations of the particle size
distribution; median of sieve fraction and numerical,
areal, and volumetric weighting of particles. We used
the average real index, n, from the literature, and for
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Figure 1. Sample particle size distributions.
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Figure 2. Reflectance spectra of saponite mixed with
(a) enstatite (En) and (b) palagonite (Pal).
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the palagonite assumed n = 1.5077 [4]. The Hapke
model [5,6] is used to determine the imaginary index
of refraction, k, at each wavelength by iteratively cal-
culating the reflectance and comparing the result to the
measured reflectance using a y’-criterion [7]. The
results are shown in Fig. 3 to wavelengths of ~4 pm;
the range most applicable to the CRISM data analysis.
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Figure 3. [Initial estimates of the optical constants
using different representations of the particle size dis-
tribution shown in Fig. 1.

Discussion and Future Efforts:

Discussion. Fig. 3 shows that the k-values estimat-
ed here are generally comparable to values in the liter-
ature (green and blue lines), with the notable exception
of the results form numerical weighting (red line). Ini-
tial k-values estimated using numerical weighting of
particles are consistently 1-2 orders of magnitude
greater than any other representation. This is due to
the large number of small grains when compared to
their area (pink line) or volume (gray line). The k-
values estimated using the median grain size of the
sieve fraction (black line) is similar to those using a
more complex grain size distribution. This suggests a
simple method of estimating k-values would be ade-
quate.

We used these various estimates to model the
measured reflectance of the enstatite-saponite mixture
in Fig. 2a. For each result we calculate the percent
relative error at every wavelength. The results are
shown in Fig. 4. In general, the median values provide
a better match to the measured spectra.
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Figure 4. Percent error between modeled and meas-
ured mixture spectra. Solid lines use k-values from
numerical weighting while dashed lines are from the
sieve median size.

Future Efforts. Future work will focus on two are-
as. We intend to determine k-values from the median
grain size for the remaining sample in our study. We
will also estimate the wavelength dependence of n,
using a subtractive Kramers-Konig (SKK) analysis.
Ideally the SKK analysis requires data at all wave-
lengths. In our efforts we restrict the analysis to the k-
values extracted from the reflectance measurements up
to ~7 um, except when data is available at longer
wavelengths from the literature. As in [7], we will
iteratively apply the Hapke and SKK analyses until the
k and n do not change significantly.
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