163 research outputs found
Advances in Preventive Therapy for Estrogen-Receptor-Negative Breast Cancer.
Preventing breast cancer is an effective strategy for reducing breast cancer deaths. The purpose of chemoprevention (also termed preventive therapy) is to reduce cancer incidence by use of natural, synthetic, or biological agents. The efficacy of tamoxifen, raloxifene, and exemestane as preventive therapy against estrogen-receptor (ER)-positive breast cancer is well established for women at increased risk for breast cancer. However, because breast cancer is a heterogeneous disease, distinct preventive approaches may be required for effective prevention of each subtype. Current research is, therefore, focused on identifying alternative mechanisms by which biologically active compounds can reduce the risk of all breast cancer subtypes including ER-negative breast cancer. Promising agents are currently being developed for prevention of HER2-positive and triple-negative breast cancer (TNBC) and include inhibitors of the ErbB family receptors, COX-2 inhibitors, metformin, retinoids, statins, poly(ADP-ribose) polymerase inhibitors, and natural compounds. This review focuses on recent progress in research to develop more effective preventive agents, in particular for prevention of ER-negative breast cancer
Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs).
Intensive basic and clinical research over the past 20 years has yielded crucial molecular understanding into how estrogen and the estrogen receptor act to regulate breast cancer and has led to the development of more effective, less toxic, and safer hormonal therapy agents for breast cancer management and prevention. Selective potent aromatase inhibitors are now challenging the hitherto gold standard of hormonal therapy, the selective estrogen-receptor modulator tamoxifen. Furthermore, new selective estrogen-receptor modulators such as arzoxifene, currently under clinical development, offer the possibility of selecting one with a more ideal pharmacological profile for treatment and prevention of breast cancer. Two recent studies in preclinical model systems that evaluate mechanisms of action of these new drugs and suggestions about their optimal clinical use are discussed
Targeted therapy for breast cancer prevention.
With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer
Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.
Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies
Targeting Nuclear Hormone Receptors for the Prevention of Breast Cancer
Advancements in research have led to the steady decline of breast cancer mortality over the past thirty years. However, breast cancer incidence has continued to rise, resulting in an undue burden on healthcare costs and highlighting a great need for more effective breast cancer prevention strategies, including targeted chemo preventative agents. Efforts to understand the etiology of breast cancer have uncovered important roles for nuclear receptors in the development and progression of breast cancer. Targeted therapies to inhibit estrogen receptor (ER) and progesterone receptor (PR) signaling (selective ER modulators, aromatase inhibitors and selective PR modulators) have shown great promise for the treatment and prevention of hormone receptor (HR)-positive breast cancer. However, these drugs do not prevent HR-negative disease. Therefore, recent efforts have focused on novel targeted therapies with the potential to prevent both HR-positive and HR-negative breast cancer. Among these include drugs that target other nuclear receptors, such as retinoic acid receptor (RAR), retinoid X receptor (RXR) and vitamin D receptor (VDR). In this review we provide an overview of recent preclinical and clinical trials targeting members of the nuclear receptor superfamily for the prevention of breast cancer
The SOX11 transcription factor is a critical regulator of basal-like breast cancer growth, invasion, and basal-like gene expression.
Basal-like breast cancers (BLBCs) are aggressive breast cancers associated with poor survival. Defining the key drivers of BLBC growth will allow identification of molecules for targeted therapy. In this study, we performed a primary screen integrating multiple assays that compare transcription factor expression and activity in BLBC and non-BLBC at the RNA, DNA, and protein levels. This integrated screen identified 33 transcription factors that were elevated in BLBC in multiple assays comparing mRNA expression, DNA cis-element sequences, or protein DNA-binding activity. In a secondary screen to identify transcription factors critical for BLBC cell growth, 8 of the 33 candidate transcription factors (TFs) were found to be necessary for growth in at least two of three BLBC cell lines. Of these 8 transcription factors, SOX11 was the only transcription factor required for BLBC growth, but not for growth of non-BLBC cells. Our studies demonstrate that SOX11 is a critical regulator of multiple BLBC phenotypes, including growth, migration, invasion, and expression of signature BLBC genes. High SOX11 expression was also found to be an independent prognostic indicator of poor survival in women with breast cancer. These results identify SOX11 as a potential target for the treatment of BLBC, the most aggressive form of breast cancer
Validation of Valosin-Containing Protein (VCP) as a Therapeutic Target for Triple Negative Breast Cancer
https://openworks.mdanderson.org/sumexp21/1196/thumbnail.jp
- …