7,212 research outputs found
An Intelligent Fuse-box for use with Renewable Energy Sources integrated within a Domestic Environment
This paper outlines a proposal for an intelligent fuse-box that can replace existing fuse-boxes in a domestic context such that a number of renewable energy sources can easily be integrated into the domestic power supply network, without the necessity for complex islanding and network protection. The approach allows intelligent control of both the generation of power and its supply to single or groups of electrical appliances. Energy storage can be implemented in such a scheme to even out the power supplied and simplify the control scheme required, and environmental monitoring and load analysis can help in automatically controlling the supply and demand profiles for optimum electrical and economic efficiency. Simulations of typical scenarios are carried out to illustrate the concept in operation
Generalized Ohm\u27s Law In A 3-D Reconnection Experiment
We report the measurement of non-ideal terms of the generalized Ohm\u27s law at a reconnection site of a weakly collisional laboratory magnetohydrodynamic plasma. Results show that the Hall term dominates the measured terms; resistive and electron inertia terms are small. We suggest that electron pressure (not measured) supports the observed quasistatic reconnection rate, and that anomalous resistivity, while not ruled out, is not required to account for the results
Three-Dimensional Structure Of Magnetic Reconnection In A Laboratory Plasma
The local three-dimensional structure of magnetic reconnection has been measured for the first time in a magnetohydrodynamic (MHD) laboratory plasma at the Swarthmore Spheromak Experiment. An array of 600 magnetic probes which resolve ion inertial length and MHD time scale dynamics on a single shot basis measured the magnetic structure of partial spheromak merging events. Counter-helicity spheromaks merge rapidly, and reconnection activity clearly self-generates a local component of B which breaks the standard 2D symmetry at the ion inertial scale. Consistent with prior results, no reconnection is observed for co-helicity merging
Taken Together: Conceptualizing Students’ Concurrent Course Enrollment across the Post-Secondary Curriculum using temporal analytics
In this study, we develop and test four measures for conceptualizing the potential impact of co-enrollment in different courses on students’ changing risk for academic difficulty and recovery from academic difficulty in a focal course. We offer four predictors, two related to instructional complexity and two related to structural complexity (the organization of the curriculum) that highlight different trends in student experience of the focal course. Course difficulty, discipline of major, time in semester, and simultaneous difficulty across courses were all significantly related to entering a moderate and high-risk classification in the early warning system (EWS). Course difficulty, discipline of major, and time in semester were related to exiting academic difficulty classifications. We observe a snowball effect, whereby students who are experiencing difficulty in the focal course are at increased risk of experiencing difficulty in their other courses. Our findings suggest that different metrics may be needed to identify risk for academic difficulty and recovery from academic difficulty. Our results demonstrate what a more holistic assessment of academic functioning might look like in early warning systems and course recommender systems, and suggest that academic planners consider the relationship between course co-enrollment and student academic success
Experimental Observation Of Energetic Ions Accelerated By Three-Dimensional Magnetic Reconnection In A Laboratory Plasma
Magnetic reconnection is widely believed responsible for heating the solar corona as well as for generating X-rays and energetic particles in solar flares. On astrophysical scales, reconnection in the intergalactic plasma is a prime candidate for a local source (Mpc) of cosmic rays exceeding the Greisen-Zatsepin-Kuzmin cutoff (∼10(19) eV). In a laboratory astrophysics experiment, we have made the first observation of particles accelerated by magnetic reconnection events to energies significantly above both the thermal and the characteristic magnetohydrodynamic energies. These particles are correlated temporally and spatially with the formation of three-dimensional magnetic structures in the reconnection region
The SUMO Ligase Protein Inhibitor of Activated STAT 1 (PIAS1) is a constituent PML-NB protein that contributes to the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1)
Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukaemia (PML)-nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signalling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase Protein Inhibitor of Activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well characterized PML-NB proteins. In contrast to Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation
Ill-Behaved Convergence of a Model of the Gd3Ga5O12 Garnet Antiferromagnet with Truncated Magnetic Dipole-Dipole Interactions
Previous studies have found that calculations which consider long-range
magnetic dipolar interactions truncated at a finite cut-off distance Rc predict
spurious (unphysical) long-range ordered phases for Ising and Heisenberg
systems on the pyrochlore lattice. In this paper we show that, similar to these
two cases, calculations that use truncated dipolar interactions to model the
Gd3Ga5O12 garnet antiferromagnet also predict unphysical phases with
incommensurate ordering wave vector q_ord that is very sensitive to the dipolar
cut-off distance Rc.Comment: 7 pages, 2 color figures; Proceedings of the HFM2006 conference, to
appear in a special issue of J. Phys.: Condens. Matte
Process-induced skew reduction in nominal zero-skew clock trees
Abstract — This work develops an analytic framework for clock tree analysis considering process variations that is shown to correspond well with Monte Carlo results. The analysis frame-work is used in a new algorithm that constructs deterministic nominal zero-skew clock trees that have reduced sensitivity to process variation. The new algorithm uses a sampling approach to perform route embedding during a bottom-up merging phase, but does not select the best embedding until the top-down phase. This results in clock trees that exhibit a mean skew reduction of 32.4 % on average and a standard deviation reduction of 40.7 % as verified by Monte Carlo. The average increase in total clock tree capacitance is less than 0.02%. I
- …