1,404 research outputs found

    Improving timeliness for acute asthma care for paediatric ED patients using a nurse driven intervention: an interrupted time series analysis.

    Get PDF
    Asthma is the most common chronic paediatric disease treated in the emergency department (ED). Rapid corticosteroid administration is associated with improved outcomes, but our busy ED setting has made it challenging to achieve this goal. Our primary aim was to decrease the time to corticosteroid administration in a large, academic paediatric ED. We conducted an interrupted time series analysis for moderate to severe asthma exacerbations of one to 18 year old patients. A multidisciplinary team designed the intervention of a bedside nurse initiated administration of oral dexamethasone, to replace the prior system of a physician initiated order for oral prednisone. Our baseline and intervention periods were 12 month intervals. Our primary process measure was the time to corticosteroid administration. Other process measures included ED length of stay, admission rate, and rate of emesis. The balance measures included rate of return visits to the ED or clinic within five days, as well as the proportion of discharged patients who were admitted within five days. No special cause variation occurred in the baseline period. The mean time to corticosteroid administration decreased significantly, from 98 minutes in the baseline period to 59 minutes in the intervention period (p \u3c 0.01), and showed special cause variation improvement within two months after the intervention using statistical process control methodology. We sustained the improvement and demonstrated a stable process. The intervention period had a significantly lower admission rate (p\u3c0.01) and emesis rate (p\u3c0.01), with no unforeseen harm to patients found with any of our balance measures. In summary, the introduction of a nurse initiated, standardized protocol for corticosteroid therapy for asthma exacerbations in a paediatric ED was associated with decreased time to corticosteroid administration, admission rates, and post-corticosteroid emesi

    Inhibition of LtxA Toxicity by Blocking Cholesterol Binding with Peptides

    Get PDF
    The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1, a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of 334LEEYSKR340, in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC336 motif of LtxA (CRAC336WT). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controllinginfections of repeats-in-toxin-producing organisms. © 2016 John Wiley & Sons A/S

    Membrane Association and Destabilization by Aggregatibacter Actinomycetemcomitans Leukotoxin Requires Changes in Secondary Structures

    Get PDF
    Aggregatibacter actinomycetemcomitans is a common inhabitant of the upper aerodigestive tract of humans and non-human primates and is associated with disseminated infections, including lung and brain abscesses, pediatric infective endocarditis in children, and localized aggressive periodontitis. A. actinomycetemcomitans secretes a repeats-in-toxin protein, leukotoxin, which exclusively kills lymphocyte function-associated antigen-1-bearing cells. The toxin\u27s pathological mechanism is not fully understood; however, experimental evidence indicates that it involves the association with and subsequent destabilization of the target cell\u27s plasma membrane. We have long hypothesized that leukotoxin secondary structure is strongly correlated with membrane association and/or destabilization. In this study, we tested this hypothesis by analyzing lipid-induced changes in leukotoxin conformation. Upon incubation of leukotoxin with lipids that favor leukotoxin-membrane association, we observed an increase in leukotoxin α-helical content that was not observed with lipids that favor membrane destabilization. The change in leukotoxin conformation after incubation with these lipids suggests that membrane binding and membrane destabilization have distinct secondary structural requirements, suggesting that they are independent events. These studies thus provide insight into the mechanism of cell damage that leads to disease progression by A. actinomycetemcomitans

    Aggregatibacter Actinomycetemcomitans Leukotoxin Causes Activation of Lymphocyte Function-Associated Antigen 1

    Get PDF
    Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin α L /β 2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic α L domain and a yellow fluorescent protein-tagged β 2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both α L and β 2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the α L and β 2 subunits (K d = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin α M , α X , and β 3 subunits (K d = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of α L and β 2 show that LtxA binds membrane-proximal domain of α L and intermediate domain of β 2 . © 2018 John Wiley & Sons Lt

    Inhibition of LtxA Toxicity by Blocking Cholesterol Binding With Peptides

    Get PDF
    The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1 (LFA-1), a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of 334LEEYSKR340, in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC336 motif of LtxA (CRAC336WT). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of RTX-producing organisms

    Aggregatibacter Actinomycetemcomitans Leukotoxin Cytotoxicity Occurs Through Bilayer Destabilization

    Get PDF
    The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while 31P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization

    Aggregatibacter Actinomycetemcomitans Leukotoxin is Post-Translationally Modified by Addition of Either Saturated or Hydroxylated Fatty Acyl Chains

    Get PDF
    Aggregatibacter actinomycetemcomitans, a common inhabitant of the human upper aerodigestive tract, produces a repeat in toxin (RTX), leukotoxin (LtxA). The LtxA is transcribed as a 114-kDa inactive protoxin with activation being achieved by attachment of short chain fatty acyl groups to internal lysine residues. Methyl esters of LtxA that were isolated from A. actinomycetemcomitans strains JP2 and HK1651 and subjected to gas chromatography/mass spectrometry contained palmitoyl (C16:0, 27–29%) and palmitolyl (C16:1 cis Δ9, 43–44%) fatty acyl groups with smaller quantities of myristic (C14:0, 14%) and stearic (C18:0, 12–14%) fatty acids. Liquid chromatography/mass spectrometry of tryptic peptides from acylated and unacylated recombinant LtxA confirmed that Lys562 and Lys687 are the sites of acyl group attachment. During analysis of recombinant LtxA peptides, we observed peptide spectra that were not observed as part of the RTX acylation schemes of either Escherichia coli α-hemolysin or Bordetella pertussis cyclolysin. Mass calculations of these spectra suggested that LtxA was also modified by the addition of monohydroxylated forms of C14 and C16 acyl groups. Multiple reaction monitoring mass spectrometry identified hydroxymyristic and hydroxypalmitic acids in wild-type LtxA methyl esters. Single or tandem replacement of Lys562 and Lys687 with Arg blocks acylation, resulting in a \u3e75% decrease in cytotoxicity when compared with wild-type toxin, suggesting that these posttranslational modifications are playing a critical role in LtxA-mediated target cell cytotoxicity

    Colwellia psychrerythraea Strains from Distant Deep Sea Basins Show Adaptation to Local Conditions

    Get PDF
    Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraeawas investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from the Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype MicoArrays. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. There appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates

    Capsaicin Displays Anti-Proliferative Activity against Human Small Cell Lung Cancer in Cell Culture and Nude Mice Models via the E2F Pathway

    Get PDF
    Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo.BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation.Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs
    • …
    corecore