12,346 research outputs found

    The relationship between EUV dimming and coronal mass ejections

    Get PDF
    Aims. There have been many studies of extreme-ultraviolet (EUV) dimming in association with coronal mass ejection (CME) onsets. However, there has never been a thorough statistical study of this association, covering appropriate temperature ranges. Thus, we make use of a large campaign database utilising the Coronal Diagnostic Spectrometer (CDS) and the Large Angle and Spectrometric COronagraph (LASCO) both on the SOlar and Heliospheric Observatory (SOHO) to associate dimming events detected at 1 and 2 million K with CME activity. The aim is to confirm whether the dimming-CME association is real or not. This in turn will confirm whether special attention should be paid to the EUV dimming in the pre-eruption and eruption periods to study the CME onset process itself. Methods. The CDS CME onset campaign data for Mg IX and FE XVI observations on the solar limb are used to compare to LASCO event lists over a period from 1998 to 2005. Dimming events are identified and the physical extent explored, whilst comparing the events to overlying CME activity. Results. For the identified dimming regions we have shown strong associations with CME onsets, with up to 55% of the dimming events being associated with CME activity. This is compared to the random case where up to 47% of the dimming regions are expected to be associated with CMEs. We have also shown that up to 84% of CMEs associated with our data can be tracked back to dimming regions. This compares to a random case of up to 58%. Conclusions. These results confirm the CME-EUV dimming association, using a statistical analysis for the first time. We discuss the repercussions for the study of CME onsets, i.e. analysis of the dimming regions and the periods up to such dimming may be key to understanding the pre-CME onset plasma processes. The results stress that one emission line may not be sufficient for associating dimming regions with CMEs

    The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict

    Get PDF
    Bacterial genomes commonly contain ‘addiction’ gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxin–antitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive ‘rock-paper-scissors’ dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes

    Executive Constraint, Judicial Uncertainty, and Legislative Complacency: Washington Responds with a Progressive Approach to Climate Change

    Get PDF
    This Comment argues that Washington\u27s renewable energy tax incentives likely discriminate against interstate commerce. More importantly, however, it contends that although these types of tax incentives violate the Commerce Clause, Congress can and should pass legislation authorizing their use under the state police power

    Executive Constraint, Judicial Uncertainty, and Legislative Complacency: Washington Responds with a Progressive Approach to Climate Change

    Get PDF
    This Comment argues that Washington\u27s renewable energy tax incentives likely discriminate against interstate commerce. More importantly, however, it contends that although these types of tax incentives violate the Commerce Clause, Congress can and should pass legislation authorizing their use under the state police power

    Doppelganger defects

    Full text link
    We study k-defects - topological defects in theories with more than two derivatives and second-order equations of motion - and describe some striking ways in which these defects both resemble and differ from their analogues in canonical scalar field theories. We show that, for some models, the homotopy structure of the vacuum manifold is insufficient to establish the existence of k-defects, in contrast to the canonical case. These results also constrain certain families of DBI instanton solutions in the 4-dimensional effective theory. We then describe a class of k-defect solutions, which we dub doppelgangers, that precisely match the field profile and energy density of their canonical scalar field theory counterparts. We give a complete characterization of Lagrangians which admit doppelganger domain walls. By numerically computing the fluctuation eigenmodes about domain wall solutions, we find different spectra for doppelgangers and canonical walls, allowing us to distinguish between k-defects and the canonical walls they mimic. We search for doppelgangers for cosmic strings by numerically constructing solutions of DBI and canonical scalar field theories. Despite investigating several examples, we are unable to find doppelganger cosmic strings, hence the existence of doppelgangers for defects with codimension >1 remains an open question.Comment: 27 pages, 4 figure

    Duration judgements in patients with schizophrenia

    Get PDF
    Background. The ability to encode time cues underlies many cognitive processes. In the light of schizophrenic patients' compromised cognitive abilities in a variety of domains, it is noteworthy that there are numerous reports of these patients displaying impaired timing abilities. However, the timing intervals that patients have been evaluated on in prior studies vary considerably in magnitude (e.g. 1 s, 1 min, 1 h etc.). Method. In order to obviate differences in abilities in chronometric counting and place minimal demands on cognitive processing, we chose tasks that involve making judgements about brief durations of time (<1 s). Results. On a temporal generalization task, patients were less accurate than controls at recognizing a standard duration. The performance of patients was also significantly different from controls on a temporal bisection task, in which participants categorized durations as short or long. Although time estimation may be closely intertwined with working memory, patients' working memory as measured by the digit span task did not correlate significantly with their performance on the duration judgement tasks. Moreover, lowered intelligence scores could not completely account for the findings. Conclusions. We take these results to suggest that patients with schizophrenia are less accurate at estimating brief time periods. These deficits may reflect dysfunction of biopsychological timing processes

    Complexity, action, and black holes

    Get PDF
    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.Comment: 55+14 pages, many figures. v2: (so many) typos fixed, references adde

    The return of the Andromedids meteor shower

    Full text link
    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as `stars fell like rain' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th Century. This shower returned in December 2011 with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar. The shower outburst occurred during 2011 Dec 3-5. The radiant at RA +18°18\degree and Dec +56°56\degree is typical of the `classical' Andromedids of the early 1800's, whose radiant was actually in Cassiopeia. The orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (16 km s1^{-1}) and was comprised of small particles: the mean measured mass from the radar is 5×107\sim5 \times 10^{-7} kg corresponding to radii of 0.5 mm at a bulk density of 1000 kg/m3^3. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, timing as well as the absence of large particles in the streamlet are all consistent with simulations. Predictions are made regarding other appearances of the shower in the years 2000-2047 based on our numerical model. We note that the details of the 2011 return can, in principle, be used to better constrain the orbit of 3D/Biela prior to the comets first recorded return in 1772.Comment: submitted to the Astronomical Journal Sep 22 201

    Simultaneous interplanetary scintillation and Heliospheric Imager observations of a coronal mass ejection

    Get PDF
    We describe simultaneous Interplanetary Scintillation (IPS) and STEREO Heliospheric Imager (HI) observations of a coronal mass ejection (CME) on 16 May 2007. Strong CME signatures were present throughout the IPS observation. The IPS raypath lay within the field-of-view of HI-1 on STEREO-A and comparison of the observations shows that the IPS measurements came from a region within a faint CME front observed by HI-1A. This front may represent the merging of two converging CMEs. Plane-of-sky velocity estimates based on time-height plots of the two converging CME structures were 325 kms?1 and 550 kms?1 for the leading and trailing fronts respectively. The plane-of-sky velocities determined from IPS ranged from 420 ± 10 kms?1 to 520 ± 20 kms?1. IPS results reveal the presence of micro-structure within the CME front which may represent interaction between the two separate CME events. This is the first time that it has been possible to interpret IPS observations of small-scale structure within an interplanetary CME in terms of the global structure of the event
    corecore