112,729 research outputs found

    Changes in the chloride content of ground water in Pinellas County, Florida between 1947 and 1956

    Get PDF
    In December 1956 the U. S. Geological Survey, in cooperation with the Florida Geological Survey and the Board of County Commissioners of Pinellas County, collected waterlevel and chloride content of water in 94 wells in Pinellas County. First sampled in 1947, resampling and reanalyzing the water from these wells was used to determine the change in the chloride content of the ground water from 1947 to 1956. The chloride content of ground water is generally a reliable indication of the contamination of ground water by sea water, as 90 percent of the dissolved solids of sea water are chloride salts. (PDF contains 15 pages.

    Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Get PDF
    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235

    Selfadjoint and mm sectorial extensions of Sturm-Liouville operators

    Get PDF
    The self-adjoint and mm-sectorial extensions of coercive Sturm-Liouville operators are characterised, under minimal smoothness conditions on the coefficients of the differential expression.Comment: accepted by IEOT, in IEOT 201

    An associated solvent theory of polymer solutions

    Get PDF
    Association model theory for thermodynamic properties of nonpolar polymer mixtures with polar solven

    Positivity of Entropy in the Semi-Classical Theory of Black Holes and Radiation

    Get PDF
    Quantum stress-energy tensors of fields renormalized on a Schwarzschild background violate the classical energy conditions near the black hole. Nevertheless, the associated equilibrium thermodynamical entropy ΔS\Delta S by which such fields augment the usual black hole entropy is found to be positive. More precisely, the derivative of ΔS\Delta S with respect to radius, at fixed black hole mass, is found to vanish at the horizon for {\it all} regular renormalized stress-energy quantum tensors. For the cases of conformal scalar fields and U(1) gauge fields, the corresponding second derivative is positive, indicating that ΔS\Delta S has a local minimum there. Explicit calculation shows that indeed ΔS\Delta S increases monotonically for increasing radius and is positive. (The same conclusions hold for a massless spin 1/2 field, but the accuracy of the stress-energy tensor we employ has not been confirmed, in contrast to the scalar and vector cases). None of these results would hold if the back-reaction of the radiation on the spacetime geometry were ignored; consequently, one must regard ΔS\Delta S as arising from both the radiation fields and their effects on the gravitational field. The back-reaction, no matter how "small",Comment: 19 pages, RevTe

    The Microcanonical Functional Integral. I. The Gravitational Field

    Full text link
    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν\nu is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by {\it any} real stationary axisymmetric black hole, then in this same approximation lnν\ln\nu is shown to equal 1/4 the area of the black hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν\nu that lead to "imaginary time" functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function.Comment: 29 pages, plain Te
    corecore