174,770 research outputs found

    CO Rovibrational Emission as a Probe of Inner Disk Structure

    Get PDF
    We present an analysis of CO emission lines from a sample of T Tauri, Herbig Ae/Be, and transitional disks with known inclinations in order to study the structure of inner disk molecular gas. We calculate CO inner radii by fitting line profiles with a simple parameterized model. We find that, for optically thick disks, CO inner radii are strongly correlated with the total system luminosity (stellar plus accretion) and consistent with the dust sublimation radius. Transitional disk inner radii show the same trend with luminosity, but are systematically larger. Using rotation diagram fits, we derive, for classical T Tauri disks, emitting areas consistent with a ring of width ~0.15 AU located at the CO inner radius; emitting areas for transitional disks are systematically smaller. We also measure lower rotational temperatures for transitional disks, and disks around Herbig Ae/Be stars, than for those around T Tauri stars. Finally, we find that rotational temperatures are similar to, or slightly lower than, the expected temperature of blackbody grains located at the CO inner radius, in contrast to expectations of thermal decoupling between gas and dust

    Implications of solar flare hard X-ray "knee" spectra observed by RHESSI

    Get PDF
    We analyse the RHESSI photon spectra of four flares that exhibit significant deviations from power laws - i.e. changes in the "local" Hard X-ray spectral index. These spectra are characterised by two regions of constant power law index connected by a region of changing spectral index - the "knee". We develop theoretical and numerical methods of describing such knees in terms of variable photon spectral indices and we study the results of their inversions for source mean thin target and collisional thick target injection electron spectra. We show that a particularly sharp knee can produce unphysical negative values in the electron spectra, and we derive inequalities that can be used to test for this without the need for an inversion to be performed. Such unphysical features would indicate that source model assumptions were being violated, particularly strongly for the collisional thick target model which assumes a specific form for electron energy loss. For all four flares considered here we find that the knees do not correspond to unphysical electron spectra. In the three flares that have downward knees we conclude that the knee can be explained in terms of transport effects through a region of non-uniform ionisation. In the other flare, which has an upward knee, we conclude that it is most likely a feature of the accelerated spectrum

    Technique for anchoring fasteners to honeycomb panels

    Get PDF
    Two-piece fastener bushing provides mounting surface for components on a three-inch thick honeycomb structure. Specially constructed starter drill and sheet metal drill permit drilling without misalignment. Tapered knife-edge cutting tool removes honeycomb core material without tearing the adjacent material
    corecore