187,814 research outputs found

    The effect of helicopter configuration on the fluid dynamics of brownout

    Get PDF
    Brown’s Vorticity Transport Model, coupled to an additional particle transport model, is used to simulate the development of the dust cloud that can form around a helicopter when operating in dusty or desert conditions. The flow field around a tandem rotor configuration is simulated during the final stages of landing. The time-averaged flow field around the helicopter is characterised by the existence of two stationary points immediately adjacent to the ground plane. Almost all entrainment of dust into the flow takes place forward of the rearmost stationary point; the dust initially remains in a thin, sheet-like layer above the ground. As the dust sheet approaches the forward stationary point, the layer thickens and forms a characteristic wedge-shaped ‘separation zone’. The amount of sand that is subsequently drawn up away from the ground then appears to be critically dependent on the strength and position relative to the separation zone of strong regions of recirculation. VTM simulations suggest that, for a tandem rotor helicopter at least, the sudden growth of the dust cloud that is responsible for the onset of brownout may be due to a change in mode within the flow field surrounding the aircraft. At higher advance ratios the flow is dominated by a strong ground vortex that is created by the rear rotor. The forward extent of the resultant dust cloud is limited though by the absence of any strong recirculation within the flow below the front rotor of the system. At lower forward speed the ground vortex of the rear rotor is replaced by a strong vortex that lies just below the leading edge of the front rotor. This vortex is responsible for drawing a significant amount of dust out of the surface layer of entrained particulates to form a dense wall of dust some distance upstream of the helicopter. A study of the effect of blade twist on the strength and shape of the dust cloud formed in the flow surrounding helicopters with tandem rotors suggests that systems with smaller blade twist but the same disc loading might produce denser dust clouds than those with high blade twist

    Satellite magnetic modeling of north African hot spots

    Get PDF
    The primary objectives of the MAGSAT mission was to measure the intensity and direction of magnetization of the Earth's crust. A significant effort was directed to the large crustal anomalies first delineated by the POGO mission. The MAGSAT data are capable of spatial resolution of the crustal field to 250 km wavelength with reliability limits to less than 1 nT in the mean. The difficulties of dealing with less than the most robust of the MAGSAT anomalies is that often there is no more than the magnetic fields themselves to constrain geophysical models of the interior, and no independent means of assessing the quality of the crustal anomaly data in interpreting the subsurface are available

    Entanglement and Relativity

    Full text link
    In this paper we survey, in an elementary fashion, some of the questions that arise when one considers how entanglement and relativity are related via the notion of non-locality. We begin by reviewing the role of entangled states in Bell inequality violation and question whether the associated notions of non-locality lead to problems with relativity. The use of entanglement and wavefunction collapse in Einstein's famous incompleteness argument is then considered, before we go on to see how the issue of non-locality is transformed if one considers quantum mechanics without collapse to be a complete theory, as in the Everett interpretation. The opportunity is taken to consider whether teleportation and dense coding might constitute a source of non-locality within the Everett interpretation.Comment: 18 pages, uses amsmath, amsfonts, natbib and fancyheadings packages. Typos corrected and additional referenc

    Static tests of excess ground attenuation at Wallops Flight Center

    Get PDF
    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses

    Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions

    Full text link
    The first generation of quantum computers are on the horizon, fabricated from quantum hardware platforms that may soon be able to tackle certain tasks that cannot be performed or modelled with conventional computers. These quantum devices will not likely be universal or fully programmable, but special-purpose processors whose hardware will be tightly co-designed with particular target applications. Trapped atomic ions are a leading platform for first generation quantum computers, but are also fundamentally scalable to more powerful general purpose devices in future generations. This is because trapped ion qubits are atomic clock standards that can be made identical to a part in 10^15, and their quantum circuit connectivity can be reconfigured through the use of external fields, without modifying the arrangement or architecture of the qubits themselves. In this article we show how a modular quantum computer of any size can be engineered from ion crystals, and how the wiring between ion trap qubits can be tailored to a variety of applications and quantum computing protocols

    Giant Leaps and Minimal Branes in Multi-Dimensional Flux Landscapes

    Full text link
    There is a standard story about decay in multi-dimensional flux landscapes: that from any state, the fastest decay is to take a small step, discharging one flux unit at a time; that fluxes with the same coupling constant are interchangeable; and that states with N units of a given flux have the same decay rate as those with -N. We show that this standard story is false. The fastest decay is a giant leap that discharges many different fluxes in unison; this decay is mediated by a 'minimal' brane that wraps the internal manifold and exhibits behavior not visible in the effective theory. We discuss the implications for the cosmological constant.Comment: Minor updates to agree with published version. 9 pages, 4 figure

    Recommendations for NASA research and development in artificial intelligence

    Get PDF
    Basic artificial intelligence (AI) research, AI applications, engineering, institutional management, and previously impractical missions enabled by AI are discussed
    corecore