3,376 research outputs found
Green's Functions from Quantum Cluster Algorithms
We show that cluster algorithms for quantum models have a meaning independent
of the basis chosen to construct them. Using this idea, we propose a new method
for measuring with little effort a whole class of Green's functions, once a
cluster algorithm for the partition function has been constructed. To explain
the idea, we consider the quantum XY model and compute its two point Green's
function in various ways, showing that all of them are equivalent. We also
provide numerical evidence confirming the analytic arguments. Similar
techniques are applicable to other models. In particular, in the recently
constructed quantum link models, the new technique allows us to construct
improved estimators for Wilson loops and may lead to a very precise
determination of the glueball spectrum.Comment: 15 pages, LaTeX, with four figures. Added preprint numbe
Enviropod handbook: A guide to preparation and use of the Environmental Protection Agency's light-weight aerial camera system
The use of the Environmental Protection Agency (EPA) Enviropod camera system is detailed in this handbook which contains a step-by-step guide for mission planning, flights, film processing, indexing, and documentation. Information regarding Enviropod equipment and specifications is included
A New Method for Selecting Exclusive Semileptonic Charmless B-Decays at Colliders at the
We introduce a new method for selecting exclusive semileptonic charmless
B-decays in the presence of a large background. The method can be applied to
charged and neutral B-mesons decaying into any exclusive neutral or charged
hadronic final state. The method is designed for high luminosity \eplemi
colliders operating at the . It employs an improved partial
reconstruction technique for \Dstar-mesons and a novel 0-C event fit to both
B-meson's decay products resulting in the kinematics of all particles
(including neutrinos) in the event. The charged lepton energies are accessible
from 1.0 \GeV to the kinematic limit.Comment: 10 pages with 7 figures in subdirectory fi
Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors
A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions
Alkali oxide-tantalum, niobium and antimony oxide ionic conductors
The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases
D-Theory: Field Theory via Dimensional Reduction of Discrete Variables
A new non-perturbative approach to quantum field theory --- D-theory --- is
proposed, in which continuous classical fields are replaced by discrete
quantized variables which undergo dimensional reduction. The 2-d classical O(3)
model emerges from the (2+1)-d quantum Heisenberg model formulated in terms of
quantum spins. Dimensional reduction is demonstrated explicitly by simulating
correlation lengths up to 350,000 lattice spacings using a loop cluster
algorithm. In the framework of D-theory, gauge theories are formulated in terms
of quantum links --- the gauge analogs of quantum spins. Quantum links are
parallel transporter matrices whose elements are non-commuting operators. They
can be expressed as bilinears of anticommuting fermion constituents. In quantum
link models dimensional reduction to four dimensions occurs, due to the
presence of a 5-d Coulomb phase, whose existence is confirmed by detailed
simulations using standard lattice gauge theory. Using Shamir's variant of
Kaplan's fermion proposal, in quantum link QCD quarks appear as edge states of
a 5-d slab. This naturally protects their chiral symmetries without
fine-tuning. The first efficient cluster algorithm for a gauge theory with a
continuous gauge group is formulated for the U(1) quantum link model. Improved
estimators for Wilson loops are constructed, and dimensional reduction to
ordinary lattice QED is verified numerically.Comment: 15 pages, LaTeX, including 9 encapsulated postscript figures.
Contribution to Lattice 97 by 5 authors, to appear in Nuclear Physics B
(Proceeding Supplements). Requires psfig.tex and espcrc2.st
- …