129 research outputs found
Decline of Monarch Butterflies Overwintering in Mexico- Is the Migratory Phenomenon at Risk?
1.During the 2009-2010 overwintering season and following a 15-year downward trend, the total area in Mexico occupied by the eastern North American population of overwintering monarch butterflies reached an all-time low. Despite an increase, it remained low in 2010-2011. 2. Although the data set is small, the decline in abundance is statistically significant using both linear and exponential regression models. 3. Three factors appear to have contributed to reduce monarch abundance: degradation of the forest in the overwintering areas; the loss of breeding habitat in the United States due to the expansion ofGM herbicide-resistant crops, with consequent loss of milkweed host plants, as well as continued land development; and severe weather. 4. This decline calls into question the long-term survival of the monarchs' migratory phenomeno
Coulomb Energy, Remnant Symmetry, and the Phases of Non-Abelian Gauge Theories
We show that the confining property of the one-gluon propagator, in Coulomb
gauge, is linked to the unbroken realization of a remnant gauge symmetry which
exists in this gauge. An order parameter for the remnant gauge symmetry is
introduced, and its behavior is investigated in a variety of models via
numerical simulations. We find that the color-Coulomb potential, associated
with the gluon propagator, grows linearly with distance both in the confined
and - surprisingly - in the high-temperature deconfined phase of pure
Yang-Mills theory. We also find a remnant symmetry-breaking transition in SU(2)
gauge-Higgs theory which completely isolates the Higgs from the
(pseudo)confinement region of the phase diagram. This transition exists despite
the absence, pointed out long ago by Fradkin and Shenker, of a genuine
thermodynamic phase transition separating the two regions.Comment: 18 pages, 19 figures, revtex
Severe Pneumonia Associated with Pandemic (H1N1) 2009 Outbreak, San Luis Potosí, Mexico
Severe pneumonia developed in young adults who had no identifiable risk factors
The Evolution of a Female Genital Trait Widely Distributed in the Lepidoptera: Comparative Evidence for an Effect of Sexual Coevolution
Sexual coevolution is considered responsible for the evolution of many male genital traits, but its effect on female genital morphology is poorly understood. In many lepidopterans, females become temporarily unreceptive after mating and the length of this refractory period is inversely related to the amount of spermatophore remaining in their genital tracts. Sperm competition can select for males that delay female remating by transferring spermatophores with thick spermatophore envelopes that take more time to be broken. These envelopes could select for signa, sclerotized sharp structures located within the female genital tract, that are used for breaking spermatophores. Thus, this hypothesis predicts that thick spermatophore envelopes and signa evolve in polyandrous species, and that these adaptations are lost when monandry evolves subsequently. Here we test the expected associations between female mating pattern and presence/absence of signa, and review the scant information available on the thickness of spermatophore envelopes.We made a literature review and found information on female mating pattern (monandry/polyandry), presence/absence of signa and phylogenetic position for 37 taxa. We built a phylogenetic supertree for these taxa, mapped both traits on it, and tested for the predicted association by using Pagel's test for correlated evolution. We found that, as predicted by our hypothesis, monandry evolved eight times and in five of them signa were lost; preliminary evidence suggests that at least in two of the three exceptions males imposed monandry on females by means of specially thick spermatophore envelopes. Previously published data on six genera of Papilionidae is in agreement with the predicted associations between mating pattern and the characteristics of spermatophore envelopes and signa.Our results support the hypothesis that signa are a product of sexually antagonistic coevolution with spermatophore envelopes
Synchronizing Allelic Effects of Opposing Quantitative Trait Loci Confirmed a Major Epistatic Interaction Affecting Acute Lung Injury Survival in Mice
Increased oxygen (O2) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F2 populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci
Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients is Associated with Microbial Translocation and Bacteremia
Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19
Lattice QCD and Particle Physics
Contribution from the USQCD Collaboration to the Proceedings of the US
Community Study on the Future of Particle Physics (Snowmass 2021).Comment: 27 pp. main text, 4 pp. appendices, 30 pp. reference
Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function
Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291
Peasant settlers and the ‘civilizing mission’ in Russian Turkestan, 1865-1917
This article provides an introduction to one of the lesser-known examples of European settler colonialism, the settlement of European (mainly Russian and Ukrainian) peasants in Southern Central Asia (Turkestan) in the late nineteenth and early twentieth centuries. It establishes the legal background and demographic impact of peasant settlement, and the role played by the state in organising and encouraging it. It explores official attitudes towards the settlers (which were often very negative), and their relations with the local Kazakh and Kyrgyz population. The article adopts a comparative framework, looking at Turkestan alongside Algeria and Southern Africa, and seeking to establish whether paradigms developed in the study of other settler societies (such as the ‘poor white’) are of any relevance in understanding Slavic peasant settlement in Turkestan. It concludes that there are many close parallels with European settlement in other regions with large indigenous populations, but that racial ideology played a much less important role in the Russian case compared to religious divisions and fears of cultural backsliding. This did not prevent relations between settlers and the ‘native’ population deteriorating markedly in the years before the First World War, resulting in large-scale rebellion in 1916
- …