978 research outputs found

    Wave attenuation model for dephasing and measurement of conditional times

    Full text link
    Inelastic scattering induces dephasing in mesoscopic systems. An analysis of previous models to simulate inelastic scattering in such systems is presented and also a relatively new model based on wave attenuation is introduced. The problem of Aharonov-Bohm(AB) oscillations in conductance of a mesoscopic ring is studied. We have shown that conductance is symmetric under flux reversal and visibility of AB oscillations decay to zero as function of the incoherence parameter, signalling dephasing. Further wave attenuation is applied to a fundamental problem in quantum mechanics, i.e., the conditional(reflection/transmission) times spent in a given region of space by a quantum particle before scattering off from that region.Comment: 8 pages, 6 figures. Based on presentations by A. M. J and C. B at the 2nd Winter Institute on Foundations of Quantum theory, Quantum Optics and QIP held at S N Bose National Centre for Basic Sciences, Kolkata, India, from January 2-11, 200

    Epilepsy Is a Risk Factor for Sudden Cardiac Arrest in the General Population

    Get PDF
    Background People with epilepsy are at increased risk for sudden death. The most prevalent cause of sudden death in the general population is sudden cardiac arrest (SCA) due to ventricular fibrillation (VF). SCA may contribute to the increased incidence of sudden death in people with epilepsy. We assessed whether the risk for SCA is increased in epilepsy by determining the risk for SCA among people with active epilepsy in a community-based study. Methods and Results This investigation was part of the Amsterdam Resuscitation Studies (ARREST) in the Netherlands. It was designed to assess SCA risk in the general population. All SCA cases in the study area were identified and matched to controls (by age, sex, and SCA date). A diagnosis of active epilepsy was ascertained in all cases and controls. Relative risk for SCA was estimated by calculating the adjusted odds ratios using conditional logistic regression (adjustment was made for known risk factors for SCA). We identified 1019 cases of SCA with ECG-documented VF, and matched them to 2834 controls. There were 12 people with active epilepsy among cases and 12 among controls. Epilepsy was associated with a three-fold increased risk for SCA (adjusted OR 2.9 [95%CI 1.1–8.0.], p = 0.034). The risk for SCA in epilepsy was particularly increased in young and females. Conclusion Epilepsy in the general population seems to be associated with an increased risk for SCA

    Dynamics of localization in a waveguide

    Get PDF
    This is a review of the dynamics of wave propagation through a disordered N-mode waveguide in the localized regime. The basic quantities considered are the Wigner-Smith and single-mode delay times, plus the time-dependent power spectrum of a reflected pulse. The long-time dynamics is dominated by resonant transmission over length scales much larger than the localization length. The corresponding distribution of the Wigner-Smith delay times is the Laguerre ensemble of random-matrix theory. In the power spectrum the resonances show up as a 1/t^2 tail after N^2 scattering times. In the distribution of single-mode delay times the resonances introduce a dynamic coherent backscattering effect, that provides a way to distinguish localization from absorption.Comment: 18 pages including 8 figures; minor correction

    Combining Path Integration and Remembered Landmarks When Navigating without Vision

    Get PDF
    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.National Institutes of Health (U.S.) (Grant T32 HD007151)National Institutes of Health (U.S.) (Grant T32 EY07133)National Institutes of Health (U.S.) (Grant F32EY019622)National Institutes of Health (U.S.) (Grant EY02857)National Institutes of Health (U.S.) (Grant EY017835-01)National Institutes of Health (U.S.) (Grant EY015616-03)United States. Department of Education (H133A011903

    Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    Get PDF
    The Kilo-Degree Survey (KiDS) is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of 1400\sim \mathrm{1400} spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly (GAMA) survey. We detect a highly significant signal (signal-to-noise-ratio \sim 120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M10131014.5h1MM \sim 10^{13}-10^{14.5} h^{-1}\mathrm{M_{\odot}}. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the Brightest Cluster Galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power-law with slope 1.16±0.131.16 \pm 0.13 (1-sigma) and with the group velocity dispersion as a power-law with slope 1.89±0.271.89 \pm 0.27 (1-sigma). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations (Cosmo-OWLS) project, ruling out models without AGN feedback

    Is Acceleration Used for Ocular Pursuit and Spatial Estimation during Prediction Motion?

    Get PDF
    Here we examined ocular pursuit and spatial estimation in a linear prediction motion task that emphasized extrapolation of occluded accelerative object motion. Results from the ocular response up to occlusion showed that there was evidence in the eye position, velocity and acceleration data that participants were attempting to pursue the moving object in accord with the veridical motion properties. They then attempted to maintain ocular pursuit of the randomly-ordered accelerative object motion during occlusion but this was not ideal, and resulted in undershoot of eye position and velocity at the moment of object reappearance. In spatial estimation there was a general bias, with participants less likely to report object reappearance being behind than ahead of the expected position. In addition, participants’ spatial estimation did not take into account the effects of object acceleration. Logistic regression indicated that spatial estimation was best predicted for the majority of participants by the difference between actual object reappearance position and an extrapolation based on pre-occlusion velocity. In combination, and in light of previous work, we interpret these findings as showing that eye movements are scaled in accord with the effects of object acceleration but do not directly specify information for accurate spatial estimation in prediction motion

    Politicizing food security governance through participation: opportunities and opposition

    Get PDF
    Since the 2007/08 food price crisis there has been a proliferation of multi-stakeholder processes (MSPs) devoted to bringing diverse perspectives together to inform and improve food security policy. While much of the literature highlights the positive contributions to be gained from an opening-up of traditionally state-led processes, there is a strong critique emerging to show that, in many instances, MSPs have de-politicizing effects. In this paper, we scrutinize MSPs in relation to de-politicization. We argue that re-building sustainable and just food systems requires alternative visions that can best be made visible through politicized policy processes. Focusing on three key conditions of politicization, we examine the UN Committee on World Food Security as a MSP where we see a process of politicization playing out through the endorsement of the ‘most-affected’ principle, which is in turn being actively contested by traditionally powerful actors. We conclude that there is a need to implement and reinforce mechanisms that deliberately politicize participation in MSPs, notably by clearly distinguishing between states and other stakeholders, as well as between categories of non-state actors.</p
    corecore