44 research outputs found

    Increasing diagnostic possibilities using the geneLEAD VIII platform for detection of SARS-CoV-2

    Get PDF
    At the time SARS-CoV-2 was identified as the cause of coronavirus disease 2019 (COVID-19) no in vitro diagnostic (IVD) tests were available since it was a new virus. Very shortly after the release of the genomic sequence of SARS-CoV-2, laboratory-developed tests (LDTs) were developed, made available and implemented in several laboratories in the Netherlands and globally. In this study, the performance of an E-gene Sarbeco specific realtime reverse-transcriptase PCR (RT-PCR) was verified on the open modus of the geneLEAD VIII sample-to-answer platform. The results obtained from 134 clinical samples, of which 63 had been tested positive, showed almost complete concordance compared to the same PCR on the routine diagnostic systems and that was validated according to the national reference standard. The only discordant sample tested positive using the routine diagnostic workflow with a cycle threshold (CT) value of 37.7, while the sample tested negative using the geneLEAD VIII workflow. In addition, good performance was achieved in analyzing a blinded SARS-CoV-2 external quality assurance (EQA) panel. Implementation of the geneLEAD VIII platform as routine diagnostic tool resulted in testing 871 clinical samples with 115 positive results. In conclusion, the geneLEAD VIII SARSCoV-2 workflow presented in this study showed excellent diagnostic performance and with a rapid turnaround time of approximately two hours it proved a valuable option for STAT SARS-CoV-2 testing in the absence of (rapid, CE-IVD) point-of-care testing platforms.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Diagnosis of intrauterine parvovirus B19 infection at birth - value of DNA detection in neonatal blood and dried blood spots

    Get PDF
    Background: Diagnosis of congenital viral infection at birth is generally attempted by direct detection of the virus by PCR in various neonatal materials. How to reliably diagnose intrauterine infection with parvovirus B19 (B19 V) at birth is unknown.Objectives: To evaluate the performance of B19 V DNA detection in cord blood (CB) or neonatal dried blood spots (DBS) in diagnosing fetal infection. Study design: Two cohorts of children diagnosed prenatally with an intrauterine B19 V infection were included in this study. CB samples of intrauterine B19 V infections that were sent to a reference laboratory for congenital infections in Stuttgart, Germany in the period 1995-2014 were tested in triplicate for B19 V DNA by quantitative PCR. DBS from children with intrauterine B19 V infection that underwent IUT at the LUMC, Leiden, the Netherlands in the period 2009-2014 were tested for B19 V DNA by quantitative B19 V PCR in triplicate.Results: Fourteen of twenty (70 %) CB samples tested positive for B19 V DNA. The positivity rate was 40 % (4/10) in those with a prenatal diagnosis< 20 weeks gestation. When intrauterine B19 V infection was diagnosed thereafter, 100 % (10/10) samples were B19 V DNA positive. Of the thirteen available DBS, twelve (92 %) tested positive. Viral load in CB and DBS corresponded inversely with time from fetal diagnosis to birth.Conclusion: B19 V DNA can be detected in neonatal blood samples of children following intrauterine B19 V infection, although the possibility of false-negatives, even in severe infections, should be considered. B19 V viral load at birth correlates with timing of infection.Research into fetal development and medicin

    Torque teno virus loads after kidney transplantation predict allograft rejection but not viral infection

    Get PDF
    The main challenge of immunosuppressive therapy after solid organ transplantation is to create a new immunological balance that prevents organ rejection and does not promote opportunistic infection. Torque teno virus (TTV), a ubiquitous and non-pathogenic single-stranded DNA virus, has been proposed as a marker of functional immunity in immunocompromised patients. Here we investigate whether TTV loads predict the risk of common viral infection and allograft rejection in kidney transplantation recipients.In a retrospective cohort of 389 kidney transplantation recipients, individual TTV loads in were measured by qPCR in consecutive plasma samples during one year follow-up. The endpoints were allograft rejection, BK polyomavirus (BKPyV) viremia and cytomegalovirus (CMV) viremia. Repeated TTV measurements and rejection and infection survival data were analysed in a joint model.During follow-up, TTV DNA detection in the transplant recipients increased from 85 to 100%. The median viral load increased to 107 genome copies/ml within three months after transplantation. Rejection, BKPyV viremia and CMV viremia occurred in 23%, 27% and 17% of the patients, respectively. With every 10-fold TTV load-increase, the risk of rejection decreased considerably (HR: 0.74, CI 95%: 0.71-0.76), while the risk of BKPyV and CMV viremia remained the same (HR: 1.03, CI 95%: 1.03-1.04 and HR: 1.01, CI 95%: 1.01-1.01).In conclusion, TTV load kinetics predict allograft rejection in kidney transplantation recipients, but not the BKPyV and CMV infection. The potential use of TTV load levels as a guide for optimal immunosuppressive drug dosage to prevent allograft rejection deserves further validation.Development and application of statistical models for medical scientific researc

    Human polyomavirus 9 infection in kidney transplant patients

    Get PDF
    Several human polyomaviruses of unknown prevalence and pathogenicity have been identified, including human polyomavirus 9 (HPyV9). To determine rates of HPyV9 infection among immunosuppressed patients, we screened serum samples from 101 kidney transplant patients in the Netherlands for HPyV9 DNA and seroreactivity. A total of 21 patients had positive results for HPyV9 DNA; positivity rates peaked at 3 months after transplantation, but the highest viral loads were measured just after transplantation. During 18 months of follow-up, HPyV9 seroprevalence increased from 33% to 46% among transplant patients; seroprevalence remained stable at ≈30% in a control group of healthy blood donors in whom no HPyV9 DNA was detected. Further analysis revealed an association between detection of HPyV9 and detection of BK polyomavirus but not of cytomegalovirus. Our data indicate that HPyV9 infection is frequent in kidney transplant patients, but the nature of infection-endogenous or donor-derived-and pathogenic potential of this virus remain unknown.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A Review.

    Get PDF
    The incidence of early-onset colorectal cancer (younger than 50 years) is rising globally, the reasons for which are unclear. It appears to represent a unique disease process with different clinical, pathological, and molecular characteristics compared with late-onset colorectal cancer. Data on oncological outcomes are limited, and sensitivity to conventional neoadjuvant and adjuvant therapy regimens appear to be unknown. The purpose of this review is to summarize the available literature on early-onset colorectal cancer. Within the next decade, it is estimated that 1 in 10 colon cancers and 1 in 4 rectal cancers will be diagnosed in adults younger than 50 years. Potential risk factors include a Westernized diet, obesity, antibiotic usage, and alterations in the gut microbiome. Although genetic predisposition plays a role, most cases are sporadic. The full spectrum of germline and somatic sequence variations implicated remains unknown. Younger patients typically present with descending colonic or rectal cancer, advanced disease stage, and unfavorable histopathological features. Despite being more likely to receive neoadjuvant and adjuvant therapy, patients with early-onset disease demonstrate comparable oncological outcomes with their older counterparts. The clinicopathological features, underlying molecular profiles, and drivers of early-onset colorectal cancer differ from those of late-onset disease. Standardized, age-specific preventive, screening, diagnostic, and therapeutic strategies are required to optimize outcomes

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Diagnosis of viral gastroenteritis by simultaneous detection of Adenovirus group F, Astrovirus, Rotavirus group A, Norovirus genogroups I and II, and Sapovirus in two internally controlled multiplex real-time PCR assays

    No full text
    Background: Norovirus, Rotavirus group A, Astrovirus, Sapovirus and Adenovirus serotypes 40 and 41, are common causes of gastroenteritis. Conventional diagnosis of these causative agents is based on antigen detection and electron microscopy. Objective: To improve the diagnostic possibilities for viral gastroenteritis, two internally controlled multiplex real-time PCRs have been developed. Study design: Individual real-time PCRs were developed and optimized for the specific detection of Norovirus genogroup I, Norovirus genogroup II, Rotavirus group A, Astrovirus, Adenovirus group F and Sapovirus. Subsequently, the PCRs were combined to two multiplex PCR reactions. The multiplex assays were clinically evaluated using 239 fecal samples submitted to our laboratory over a 1-year period for the routine detection of Rotavirus and/or Adenovirus antigens using the Vikia (R) Rota/Adeno test (bioMerieux, Boxtel, The Netherlands). Results: In general, the multiplex real-time PCR assays showed comparable sensitivity and specificity to the individual assays. Aretrospective clinical evaluation showed increased pathogen detection in samples from 14% using conventional methods to 45% using PCR. Subsequently, the assay was implemented as a routine diagnostic tool. From September 2007 up to December 2009, 486 positive results were obtained in 1570 samples (31%) analyzed. Norovirus genogroup II was found the most frequently (61.1%), followed by Adenovirus (9.9%), Rotavirus (9.3%), Astrovirus (6.0%), Norovirus genogroup I (3.3%) and Sapovirus (0.4%). Conclusions: Two internally controlled multiplex real-time PCR assays for the simultaneous detection of Astrovirus, Adenovirus group F, Rotavirus, Norovirus genogroups I and II and Sapovirus have shown significant improvement in the diagnosis of viral gastroenteritis. (C) 2010 Elsevier B. V. All rights reserved.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Impact of HPyV9 and TSPyV coinfection on the development of BK polyomavirus viremia and associated nephropathy after kidney transplantation

    No full text
    Background BK polyomavirus (BKPyV) persistently infects the urinary tract and causes viremia and nephropathy in kidney transplantation (KTx), recipients. In a previous study, we observed an increased incidence and load of BKPyV viremia in KTx patients coinfected with human polyomavirus 9 (HPyV9). Here we sought confirmation of this observation and explored whether novel HPyVs that have been detected in urine (HPyV9 and trichodysplasia spinulosa polyomavirus [TSPyV]) potentially aggravate BKPyV infection. Methods A well-characterized cohort of 209 KTx donor-recipient pairs was serologically and molecularly analyzed for HPyV9 and TSPyV coinfection. These data were correlated with the occurrence of BKPyV viremia and BKPyVAN in the recipients within a year after KTx. Results Seropositivity for HPyV9 (19%) and TSPyV (89%) was comparable between donors and recipients and did not correlate with BKPyV viremia and BKPyVAN that developed in 25% and 3% of the recipients, respectively. Two recipients developed TSPyV viremia and none HPyV9 viremia. Modification of the predictive effect of donor BKPyV seroreactivity on recipient BKPyV viremia by HPyV9 and TSPyV was not observed. Conclusions Our data provide no evidence for a promoting effect of HPyV9 and TSPyV on BKPyV infection and BKPyVAN in renal allograft patients. Therefore, we do not recommend including HPyV9 and TSPyV screening in KTx patients
    corecore