144 research outputs found

    Examining slit pore widths within plasma-exfoliated graphitic material utilising Barrett–Joyner–Halenda analysis

    Get PDF
    Plasma-exfoliated multilayer graphitic material (MLG) consists of orderly aligned stacks which contain many partially oxidised graphitic layers. Slit pores are present between successive stacks and their presence allows for improved friability, facile dispersion and accessibility for the intercalation of compounds. Whilst much research exists into the synthesis and application of MLG, there is a lack of quantitative data regarding their porous structures. This report outlines the structure of MLG as well as the application of Barrett–Joyner–Halenda (BJH) analysis to estimate the distance between adjacent stacks of orderly aligned graphitic layers within MLG. It was found that the distance between stacks can vary quite substantially between 2–131 nm within these plasma-derived materials, correlating with the width of meso- and macro-slit pores. Furthermore, t-plot data also suggests that micropores, likely to exist in the form of both slit pores and in-plane pores, are present within the material, hence stack separations may also exhibit distances of <2 nm. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffraction (XRD) were used to assist in this interpretation and to correlate with the BJH analysis. MLG was further analysed using Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET) and t-plot analysis, X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy to gain a comprehensive understanding of the material investigated. The above techniques provided results which were consistent with the BJH porosity analysis, thus establishing it as a straightforward and highly effective method for understanding materials with broad pore distributions such as MLGs

    A simple and generic CAD/CAM approach for AFM probe-based machining

    Get PDF
    Atomic Force Microscopy (AFM) probe-based machining allows surface structuring at the nano-scale via the mechanical modification of material. This results from the direct contact between the tip of an AFM probe and the surface of a sample. Given that AFM instruments are primarily developed for obtaining high-resolution topography information of inspected specimen, raster scanning typically defines the trajectory followed by the tip of an AFM probe. Although most AFM manufacturers provide software modules to perform user-defined tip displacement operations, such additional solutions can be limited with respect to 1) the range of tip motions that can be designed, 2) the level of automation when defining tip displacement strategies and 3) the portability for easily transferring trajectories data between different AFM instruments. In this context, this research presents a feasibility study, which aims to demonstrate the applicability of a simple and generic CAD/CAM approach when implementing AFM probe-based nano-machining for producing two-dimensional (2D) features with a commercial AFM instrument

    Effect of machining parameters and cutting tool coating on hole quality in dry drilling of fibre metal laminates

    Get PDF
    Fibre metal laminates (FMLs) are a special type of hybrid materials, which consist of sheets of metallic alloys and prepregs of composite layers stacked together in an alternating sequence and bonded together either mechanically using micro hooks or thermally using adhesive epoxies. The present paper contributes to the current literature by studying the effects of three types of cutting tool coatings namely TiAlN, AlTiN/TiAlN and TiN on the surface roughness and burr formation of holes drilled in an FML commercially known as GLARE®. While the cutting tool geometry is fixed, the study is also conducted for a range of drilling conditions by varying the spindle speed and the feed rate. The obtained results indicate that the spindle speed and the type of cutting tool coating had the most significant influence on the achieved surface roughness metrics, while tool coating had the most significant effect on burr height and burr root thickness. The most important outcome for practitioners is that the best results in terms of minimum roughness and burr formation were obtained for the TiN coated drills. However, such drills outperform the other two types of tools, i.e. with TiAlN and AlTiN/TiAlN coatings, only when used for short series of hole drilling due to rapid tool deterioratio

    A simple and generic CAD/CAM approach for AFM probe-based machining

    Get PDF
    Atomic Force Microscopy (AFM) probe-based machining allows surface structuring at the nano-scale via the mechanical modification of material. This results from the direct contact between the tip of an AFM probe and the surface of a sample. Given that AFM instruments are primarily developed for obtaining high-resolution topography information of inspected specimen, raster scanning typically defines the trajectory followed by the tip of an AFM probe. Although most AFM manufacturers provide software modules to perform user-defined tip displacement operations, such additional solutions can be limited with respect to 1) the range of tip motions that can be designed, 2) the level of automation when defining tip displacement strategies and 3) the portability for easily transferring trajectories data between different AFM instruments. In this context, this research presents a feasibility study, which aims to demonstrate the applicability of a simple and generic CAD/CAM approach when implementing AFM probe-based nano-machining for producing two-dimensional (2D) features with a commercial AFM instrument

    Fabrication of Aluminium Nanowires by Differential Pressure Injection

    Get PDF
    The reported study aims to demonstrate the application of a simple technique, which is referred to as pressure differential injection, to prepare metallic nanowires. This technique relies on the difference in pressure between the inside of sealed nanochannels of an anodic aluminium oxide (AAO) substrate and the ambient atmosphere to inject a molten metal, which is previously deposited on the substrate, into the AAO pores. The application of this technique enabled the fabrication of nanowires in aluminium with diameters comprised between 55 nm and 65 nm

    Fabrication of periodic nanostructures using AFM tip-based nanomachining: combining groove and material pile-Up topographies

    Get PDF
    This paper presents an atomic force microscopy (AFM) tip-based nanomachining method to fabricate periodic nanostructures. This method relies on combining the topography generated by machined grooves with the topography resulting from accumulated pile-up material on the side of these grooves. It is shown that controlling the distance between adjacent and parallel grooves is the key factor in ensuring the quality of the resulting nanostructures. The presented experimental data show that periodic patterns with good quality can be achieved when the feed value between adjacent scratching paths is equal to the width between the two peaks of material pile-up on the sides of a single groove. The quality of the periodicity of the obtained nanostructures is evaluated by applying one- and two-dimensional fast Fourier transform (FFT) algorithms. The ratio of the area of the peak part to the total area in the normalized amplitude–frequency characteristic diagram of the cross-section of the measured AFM image is employed to quantitatively analyze the periodic nanostructures. Finally, the optical effect induced by the use of machined periodic nanostructures for surface colorization is investigated for potential applications in the fields of anti-counterfeiting and metal sensing

    Assessment and validation of SPH modeling for nano-indentation

    Get PDF
    Nano-indentation tests are important techniques in material science. Over the past two decades, many numerical approaches have been proposed to model and simulate the nano-indentation process. In this paper, the possibility of modeling the process using a meshless numerical technique, known as smooth particle hydrodynamics (SPH), is explored. In particular, the SPH modeling of nano-indentation is conducted using the ANSYS/LS-DYNA software using three different published studies as benchmarks. More specifically, SPH results reported by Guo et al. (J Semicond 36:083007, 2015) when nano-indenting a KPD crystal were used first to verify the validity of the SPH model established in this work. Following this, the outcomes of further SPH simulations were found to compare well against finite element modeling and experimental results reported in Dao et al. (Acta Mater 49:3899–3918, 2001) and Karimzadeh et al. (Comput Mater Sci 81:595–600, 2014) for both micro- and nano-indentation, respectively. These observations suggest that SPH is a technique with the potential to be considered more widely by researchers investigating high strain, or strain rate, deformation phenomena on the nanoscale. For example, the presented research on the development of a SPH-based nano-indentation model lays the foundations toward formulating a comprehensive model for the accurate simulation of nanoscale tool-based machining processes
    • …
    corecore